首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The negative effective magnetic pressure instability discovered recently in direct numerical simulations (DNSs) may play a crucial role in the formation of sunspots and active regions in the Sun and stars. This instability is caused by a negative contribution of turbulence to the effective mean Lorentz force (the sum of turbulent and non-turbulent contributions) and results in the formation of large-scale inhomogeneous magnetic structures from an initially uniform magnetic field. Earlier investigations of this instability in DNSs of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime of large plasma ?? are now extended into the regime of larger scale separation ratios where the number of turbulent eddies in the computational domain is about 30. Strong spontaneous formation of large-scale magnetic structures is seen even without performing any spatial averaging. These structures encompass many turbulent eddies. The characteristic time of the instability is comparable to the turbulent diffusion time, L 2/?? t, where ?? t is the turbulent diffusivity and L is the scale of the domain. DNSs are used to confirm that the effective magnetic pressure does indeed become negative for magnetic field strengths below the equipartition field. The dependence of the effective magnetic pressure on the field strength is characterized by fit parameters that seem to show convergence for larger values of the magnetic Reynolds number.  相似文献   

2.
Mechanisms of nonhelical large‐scale dynamos (shear‐current dynamo and effect of homogeneous kinetic helicity fluctuations with zero mean) in a homogeneous turbulence with large‐scale shear are discussed. We have found that the shearcurrent dynamo can act even in random flows with small Reynolds numbers. However, in this case mean‐field dynamo requires small magnetic Prandtl numbers (i.e., when Pm < Pmcr < 1). The threshold in the magnetic Prandtl number, Pmcr = 0.24, is determined using second order correlation approximation (or first‐order smoothing approximation) for a background random flow with a scale‐dependent viscous correlation time τc = (νk 2)–1 (where ν is the kinematic viscosity of the fluid and k is the wave number). For turbulent flows with large Reynolds numbers shear‐current dynamo occurs for arbitrary magnetic Prandtl numbers. This dynamo effect represents a very generic mechanism for generating large‐scale magnetic fields in a broad class of astrophysical turbulent systems with large‐scale shear. On the other hand, mean‐field dynamo due to homogeneous kinetic helicity fluctuations alone in a sheared turbulence is not realistic for a broad class of astrophysical systems because it requires a very specific random forcing of kinetic helicity fluctuations that contains, e.g., low‐frequency oscillations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We provide a theory of magnetic diffusion, momentum transport, and mixing in the solar tachocline by considering magnetohydrodynamics (MHD) turbulence on a β plane subject to a large scale shear (provided by the latitudinal differential rotation). In the strong magnetic field regime, we find that the turbulent viscosity and diffusivity are reduced by magnetic fields only, similarly to the two-dimensional MHD case (without Rossby waves). In the weak magnetic field regime, we find a crossover scale (LR) from a Alfvén dominated regime (on small scales) to a Rossby dominated regime (on large scales). For parameter values typical of the tachocline, LR is larger than the solar radius so that Rossby waves are unlikely to play an important role in the transport of magnetic field and angular momentum. This is mainly due to the enhancement of magnetic back-reaction by shearing which efficiently generates small scales, thus strong currents. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos with α linearly depending on position, which makes this dynamo oscillatory, too. In both cases, the critical values of the dynamo number is lowered due to spatio‐temporal nonlocality.When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos  相似文献   

6.
The negative effective magnetic-pressure instability operates on scales encompassing many turbulent eddies, which correspond to convection cells in the Sun. This instability is discussed here in connection with the formation of active regions near the surface layers of the Sun. This instability is related to the negative contribution of turbulence to the mean magnetic pressure that causes the formation of large-scale magnetic structures. For an isothermal layer, direct numerical simulations and mean-field simulations of this phenomenon are shown to agree in many details, for example the onset of the instability occurs at the same depth. This depth increases with increasing field strength, such that the growth rate of this instability is independent of the field strength, provided the magnetic structures are fully contained within the domain. A linear stability analysis is shown to support this finding. The instability also leads to a redistribution of turbulent intensity and gas pressure that could provide direct observational signatures.  相似文献   

7.
The role of shear in alleviating catastrophic quenching by shedding small‐scale magnetic helicity through fluxes along contours of constant shear is discussed. The level of quenching of the dynamo effect depends on the quenched value of the turbulent magnetic diffusivity. Earlier estimates that might have suffered from the force‐free degeneracy of Beltrami fields are now confirmed for shear flows where this degeneracy is lifted. For a dynamo that is saturated near equipartition field strength those estimates result in a 5‐fold decrease of the magnetic diffusivity as the magnetic Reynolds number based on the wavenumber of the energy‐carrying eddies is increased from 2 to 600. Finally, the role of shear in driving turbulence and large‐scale fields by the magneto‐rotational instability is emphasized. New simulations are presented and the 3π /4 phase shift between poloidal and toroidal fields is confirmed. It is suggested that this phase shift might be a useful diagnostic tool in identifying mean‐field dynamo action in simulations and to distinguish this from other scenarios invoking magnetic buoyancy as a means to explain migration away from the midplane. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The property of inhomogeneous turbulence in conducting fluids to expel large‐scale magnetic fields in the direction of decreasing turbulence intensity is shown as important for the magnetic field dynamics near the base of a stellar convection zone. The downward diamagnetic pumping confines a fossil internal magnetic field in the radiative core so that the field geometry is appropriate for formation of the solar tachocline. For the stars of solar age, the diamagnetic confinement is efficient only if the ratio of turbulent magnetic diffusivity ηT of the convection zone to the (microscopic or turbulent) diffusivity ηin of the radiative interior is ηT/ηin 105. Confinement in younger stars requires larger ηT/ηin. The observation of persistent magnetic structures on young solar‐type stars can thus provide evidence for the nonexistence of tachoclines in stellar interiors and on the level of turbulence in radiative cores. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Considering a plasma with an initially weak large scale field subject to nonhelical turbulent stirring, Zeldovich (1957), for two‐dimensions, followed by others for three dimensions, have presented formulae of the form 〈b2〉 = f(RM) . Such “Zeldovich relations” have sometimes been interpreted to provide steady‐state relations between the energy associated with the fluctuating magnetic field and that associated with a large scale or mean field multiplied by a function f that depends on spatial dimension and a magnetic Reynolds number RM. Here we dissect the origin of these relations and pinpoint pitfalls that show why they are inapplicable to realistic, dynamical MHD turbulence and that they disagree with many numerical simulations. For 2D, we show that when the total magnetic field is determined by a vector potential, the standard Zeldovich relation applies only transiently, characterizing a maximum possible value that the field energy can reach before necessarily decaying. In 3D, we show that the standard Zeldovich relations are derived by balancing subdominant terms. In contrast, balancing the dominant terms shows that the fluctuating field can grow to a value independent of RM and the initially imposed , as seen in numerical simulations. We also emphasize that these Zeldovich relations of nonhelical turbulence imply nothing about the amount mean field growth in a helical dynamo. In short, by re‐analyzing the origin of the Zeldovich relations, we highlight that they are inapplicable to realistic steady‐states of large RM MHD turbulence. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Turbulent plane‐shear flow is found to show same basic effects of mean‐fieldMHD as rotating turbulence. In particular, the mean electromotive force (EMF) includes highly anisotropic turbulent diffusion and alpha‐effect. Only magnetic diffusion remains for spatially‐uniform turbulence. The question is addressed whether in this case a self‐excitation of a magnetic field by so‐called sher‐current dynamo is possible and the quasilinear theory provides a negative answer. The streamaligned component of the EMF has the sign opposite to that required for dynamo. If, however, the turbulence is not uniform across the flow direction then a dynamo‐active α ‐effect emerges. The critical magnetic Reynolds number for the alpha‐shear dynamo is estimated to be slightly above ten. Possibilities for cross‐checking theoretical predictions with MHD experiments are discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Magnetically mediated disk outflows are a leading paradigm to explain winds and jets in a variety of astrophysical sources, but where do the fields come from? Since accretion of mean magnetic flux may be disfavored in a thin turbulent disk, and only fields generated with sufficiently large scale can escape before being shredded by turbulence, in situ field production is desirable. Nonlinear helical inverse dynamo theory can provide the desired fields for coronae and outflows. We discuss the implications for contemporary protostellar disks, where the (magneto-rotational instability (MRI)) can drive turbulence in the inner regions, and primordial protostellar disks, where gravitational instability drives the turbulence. We emphasize that helical dynamos are compatible with the magneto-rotational instability, and clarify the relationship between the two.  相似文献   

12.
Drift instabilities arising when accelerated protons are trapped in the intergalactic medium are examined. If α, the ratio of total (plasma + energetic particles) pressure and magnetic field pressure is larger than some value α?0.1 to 0.3, the magnetic trap is destroyed and protons are released into interstellar medium. If α<α*, the trapped protons exhibit gradient instability due to magnetic drift resonance. This ‘universal’ instability results in rapid development of strong Alfvén wave turbulence with small wavelengths transverse to the magnetic field. Particle diffusion due to the waves has a rather complicated character and appears to be weak as compared to quasilinear diffusion.  相似文献   

13.
The spectral tensor of turbulent motion in an infinite conductive incompressible medium is given in the case of a uniform magnetic field of any strenght affecting a homogeneous turbulence. With the help of BOCHNER 's theorem we make sure that the trace ui(x, t) ui(x, t) is non-negative. The presence of a weak magnetic field causes a damping of the turbulence, in some cases a strengthening. For strong magnetic fields the norms of the velocity vectors parallel and perpendicular to B approach one and the same value. Compared with the correlation length measured perpendicular to the magnetic field the correlation length measured along the magnetic field increases. Furthermore, our formulas have allowed to calculate the dependence of the α-effect on the magnetic field.  相似文献   

14.
Stability of thin hot Keplerian discs is investigated asymptotically in small disc's aspect ratio, ε. The study is carried out in the local approximation for short vertical waves in the disc‐thickness scale. Besides the radial rotation shear and the vertical magnetic field, the background configuration is characterized by a vertically near‐constant temperature profile with a small vertical gradient. The temperature‐gradient term in Ohm's law, which characterizes the thermomagnetic transport is found to be of the order of ε. The effect of the thermomagnetic transport slightly modifies the conventional magnetorotational instability (MRI), while a new thermomagnetic instability (TMI) emerges in regions of the wavenumber space where MRI is absent. Explicit solutions are obtained for a wide range of values of plasma beta, β, and thermomagnetic transport coefficient, λ. In particular, it is shown for λ ≪ 1 that the MRI dominates in weak magnetic fields, β ≫ 1, while the TMI is exhibited in strong magnetic fields, β ∼ 1, also with the growth rate of the order of inverse rotation period (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this short paper we show that making turbulence two‐rather than three‐dimensional may increase the effective turbulent viscosity by about 40 %. Dimensionless hydrodynamical viscosity parameters up to αmax = 0.25 Mt2 may be obtained in this approach, which are in better agreement with the observational data on non‐stationary accretion than the values obtained in numerical simulations. However, the α ‐parameter values known from observations are still several times higher (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A plane‐shear flow in a fluid with forced turbulence is considered. If the fluid is electrically‐conducting then a mean electromotive force (EMF) results even without basic rotation and the magnetic diffusivity becomes a highly anisotropic tensor. It is checked whether in this case self‐excitation of a large‐scale magnetic field is possible (so‐called × ‐dynamo) and the answer is NO. The calculations reveal the cross‐stream components of the EMF perpendicular to the mean current having the wrong signs, at least for small magnetic Prandtl numbers. After our results numerical simulations with magnetic Prandtl number of about unity have only a restricted meaning as the Prandtl number dependence of the diffusivity tensor is rather strong. If, on the other hand, the turbulence field is strati.ed in the vertical direction then a dynamo‐active α ‐effect is produced. The critical magnetic Reynolds number for such a self‐excitation in a simple shear flow is slightly above 10 like for the other – but much more complicated – flow patterns used in existing dynamo experiments with liquid sodium or gallium. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We study the evolution of growth and decay laws for the magnetic field coherence length ξ, energy EM and magnetic helicity H in freely decaying 3D MHD turbulence. We show that with certain assumptions, self‐similarity of the magnetic power spectrum alone implies that ξt1/2. This in turn implies that magnetic helicity decays as Ht–2s, where s = (ξdiff/ξH)2, in terms of ξdiff, the diffusion length scale, and ξH, a length scale defined from the helicity power spectrum. The relative magnetic helicity remains constant, implying that the magnetic energy decays as EMt–1/2–2s. The parameter s is inversely proportional to the magnetic Reynolds number ReM, which is constant in the self‐similar regime. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
K. Petrovay 《Solar physics》2003,215(1):17-30
The first consistent model for the turbulent tachocline is presented, with the turbulent diffusivity computed within the model instead of being specified arbitrarily. For the origin of the 3D turbulence a new mechanism is proposed. Owing to the strongly stable stratification, the mean radial shear is stable, while the horizontal shear is expected to drive predominantly horizontal, quasi-2D motions in thin slabs. Here I suggest that a major source of 3D overturning turbulent motions in the tachocline is the secondary shear instability due to the strong, random vertical shear arising between the uncorrelated horizontal flows in neighboring slabs. A formula for the vertical diffusivity due to this turbulence, Equation (9), is derived and applied in a simplified 1D model of the tachocline. It is found that Maxwell stresses due to an oscillatory poloidal magnetic field of a few hundred gauss are able to confine the tachocline to a thickness less than 5 Mm. The integral scale of the 3D overturning turbulence is the buoyancy scale, on the order of 10 km, and its velocity amplitude is a few m s–1, yielding a vertical turbulent diffusivity on the order of 108 cm2 s–1.  相似文献   

19.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The star ζ Ophiuchi is one of the brightest massive stars in the northern hemisphere and was intensively studied in various wavelength domains. The currently available observational material suggests that certain observed phenomena are related to the presence of a magnetic field. We acquired spectropolarimetric observations of ζ Oph with FORS 1 mounted on the 8‐m Kueyen telescope of the VLT to investigate if a magnetic field is indeed present in this star. Using all available absorption lines, we detect a mean longitudinal magnetic field 〈Bzall = 141 ± 45 G, confirming the magnetic nature of this star. We review the X‐ray properties of ζ Oph with the aim to understand whether the X‐ray emission of ζ Oph is dominated by magnetic or by wind instability processes (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号