首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
吴珍汉  叶培盛  胡道功  陆露 《地质通报》2011,30(07):1009-1016
西藏羌塘地块南部古近纪发育肖茶卡-双湖逆冲推覆构造、多玛-其香错逆冲推覆构造、赛布错-扎加藏布逆冲推覆构造,构成古近纪大型逆冲推覆构造系统。沿逆冲推覆构造的前锋断层,二叠系白云岩与大理岩化灰岩、三叠系砂岩与页岩、侏罗系碎屑岩与碳酸盐岩和三叠纪—侏罗纪蛇绿岩自北向南逆冲推覆于古近纪红色砂砾岩之上,形成规模不等的构造岩片与飞来峰。羌塘盆地南部主要的逆冲断层和下伏的褶皱红层被中新世湖相沉积地层角度不整合覆盖,表明逆冲推覆构造运动自中新世以来基本停止活动。羌塘盆地南部古近纪逆冲推覆构造运动在近南北方向产生的最小位移为90km,指示新生代早期上地壳缩短率约为47%。古近纪逆冲推覆构造对羌塘盆地油气资源具有重要影响。  相似文献   

2.
青藏高原羌塘盆地南部古近纪逆冲推覆构造系统   总被引:2,自引:0,他引:2  
吴珍汉  叶培盛  胡道功  陆露 《地质通报》2011,30(7):1009-1016
西藏羌塘地块南部古近纪发育肖茶卡-双湖逆冲推覆构造、多玛-其香错逆冲推覆构造、赛布错-扎加藏布逆冲推覆构造,构成古近纪大型逆冲推覆构造系统。沿逆冲推覆构造的前锋断层,二叠系白云岩与大理岩化灰岩、三叠系砂岩与页岩、侏罗系碎屑岩与碳酸盐岩和三叠纪—侏罗纪蛇绿岩自北向南逆冲推覆于古近纪红色砂砾岩之上,形成规模不等的构造岩片与飞来峰。羌塘盆地南部主要的逆冲断层和下伏的褶皱红层被中新世湖相沉积地层角度不整合覆盖,表明逆冲推覆构造运动自中新世以来基本停止活动。羌塘盆地南部古近纪逆冲推覆构造运动在近南北方向产生的最小位移为90km,指示新生代早期上地壳缩短率约为47%。古近纪逆冲推覆构造对羌塘盆地油气资源具有重要影响。  相似文献   

3.
青藏高原中段渐新世逆冲推覆构造   总被引:2,自引:0,他引:2       下载免费PDF全文
青藏高原中段渐新世发育大规模逆冲推覆构造,在地块边界与汇聚部位形成大型逆冲推覆构造体系,典型实例如东昆仑南部逆冲推覆构造系统、羌塘地块北侧逆冲推覆构造系统、伦坡拉—安多—索县逆冲推覆构造系统、冈底斯逆冲推覆构造系统、喜马拉雅山脉主中央逆冲系。大部分逆冲断层呈现叠瓦状排列,指示自北向南逆冲推覆构造运动方向,与印度大陆北向俯冲存在动力学成因联系。高精度同位素测年资料显示,喜马拉雅山脉主中央逆冲系与羌塘地块北侧风火山逆冲推覆构造初始发育时代均早于35 Ma,东昆仑南部逆冲推覆构造运动与风火山相关岩浆侵位年龄为28.8~26.5 Ma。青藏高原腹地强烈逆冲推覆构造运动结束于早中新世五道梁群湖相沉积之前。青藏高原渐新世逆冲推覆构造运动对地壳缩短增厚与均衡隆升具有重要贡献。  相似文献   

4.
河北赤城岩浆岩区逆冲推覆构造特征及其形成机制   总被引:6,自引:1,他引:6  
叶俊林  向树元 《地球科学》1989,14(1):95-100
  相似文献   

5.
大别山陆内造山带形成于早侏罗世晚期至早白恶世(J^31-K1),并具有分期演化特征。在构造演化序列上,可分出造山前期(J^21-J2)和造山主期(J3-K1)2个阶段。构造变形方面,基本构造格局为一大型逆冲推覆系统组成的构造楔形体,呈后展式扩展,造成的地壳短缩量可达46.8%,动力变质作用以高压动力变质为特征,发育高压动力变质岩(榴辉岩、蓝片岩和高压麻粒岩),形成于构造应力集中的主干逆掩断层上盘。岩浆岩属钙碱性岩石系列,中酸性岩石组合,其中岩石类型,稀土元素配分型式等所反映的构造运动强度均具有一定的特点。在陆内造山带形成过程中伴生了3期同造山磨拉石,朱集期磨拉石(J2z),段集期磨拉石(J3d)和下符桥期磨拉石(K2x),它们反映了不同造山时期构造运动强度的差异。  相似文献   

6.
鄂尔多斯盆地西缘位于华北陆块和秦祁昆山造山带两个一级大地构造单元之间的过渡带内, 特定的大地构造背景使其具有复杂的构造演化历程及特殊的煤田构造格局。鄂尔多斯盆地西缘由贺兰山逆冲推覆构造系统和六盘山东麓逆冲推覆构造系统组成, 具有"南北分段、东西分带"的特点。为了进一步探讨鄂尔多斯盆地西缘煤田构造格局的形成演化及区域构造控制因素, 本文基于野外地质调查和煤田勘查资料, 恢复了本区自晚古生代以来的沉降抬升史和古构造应力场特征。印支期: 研究区北部最大主压应力方向为北西—南东向, 南部最大主压应力方向为北东—南西向, 燕山期: 北部最大主压应力方向为北西西—南东东向, 南部最大主压应力方向为北东东—南西西向, 喜马拉雅山期: 北部受北西西—南东东向拉张应力, 南部最大主压应力方向为北东—南西向。采用有限元数值模拟, 探讨了鄂尔多斯盆地西缘煤田构造格局的形成与区域构造的演化的关系, 强调北段贺兰山逆冲推覆构造系统的形成与阿拉善地块的向东挤出逃逸密切相关。  相似文献   

7.
柯坪塔格推覆构造几何学、运动学及其构造演化   总被引:29,自引:1,他引:29  
大量野外构造地质调查和深部构造解释表明柯坪塔格推覆构造由多组倒转复式背斜、复式箱状背斜构成的推覆体及其前缘逆冲断裂组成 ,由寒武系—第四系组成的推覆体由北向南逆—斜冲 ,平面上构成向南凸出的弧形推覆构造 ;普昌断裂由各不相连的逆冲斜冲断裂段组成 ,而不是完整的一条走滑断层 ,各推覆体前缘逆冲断裂与各推覆体的普昌断裂段共同构成统一的前缘逆冲斜冲逆冲断裂和推覆构造系统 ;普昌断裂段以西的推覆体具有向东抬升、向西倾覆的鼻状构造特征 ,普昌断裂段以东的推覆体具有向西抬升、向东倾覆的鼻状构造特征 ,普昌基底隆起带是巴楚隆起隐伏在柯坪塔格推覆构造之下的部分。各推覆体前缘断裂在深部均归并于统一的寒武系底部的滑脱面 ,其南浅北深 ,东浅西深 (普昌隆起带以西 )或西浅东深 (普昌隆起带以东 ) (6 10km ) ,埋深较大区发育多组滑脱面。柯坪塔格推覆构造的形成时期为晚第四纪 ,为现今活动的推覆构造系统。文中认为各推覆体向南西的倾覆端基底滑脱面和中新生界内部的滑脱面没有贯通 ,是未来 6级以上地震的发震构造部位。  相似文献   

8.
沿隆鄂尼—昂达尔错古油藏发现大量逆冲推覆构造,如北雷错东西两侧、隆鄂尼西北侧、比洛错东南侧、鲁雄错东西两侧,侏罗系烃源岩及含油白云岩沿低角度缓倾斜断层自北向南逆冲推覆于上白垩统红层之上,昂达尔错西北侧中侏罗统含油碳酸盐岩和碎屑岩自北向南逆冲推覆于三叠系灰黑色碎屑岩之上,形成不同规模的逆冲岩席、逆冲岩片、飞来峰和构造窗。高分辨率二维地震反射剖面显示,隆鄂尼—昂达尔错古油藏深部发育多重逆冲推覆构造;比洛错中侏罗统含油白云岩沿顶部双重推覆构造自北向南运移7~11km和12~15km,分别形成隆鄂尼古油藏和德如日古油藏;下伏三叠系及石炭系—二叠系沿底部双重推覆构造自北向南发生大规模逆冲推覆,前锋被向北逆冲的反向断层切割错断。野外观测表明,隆鄂尼—昂达尔错古油藏与羌中隆起北侧油苗带之间发育大量侏罗系逆冲岩席和飞来峰;深地震反射剖面构造解释进一步揭示,三叠系和侏罗系海相烃源岩经历自北羌塘向南羌塘长距离逆冲推覆构造运动,自北向南逆冲推覆运动导致侏罗系烃源岩及中侏罗统含油白云岩构造隆升,形成昂达尔错、隆鄂尼、德如日等古油藏。隆鄂尼—昂达尔错古油藏逆冲推覆及构造隆升主要发生于晚白垩世—古近纪。  相似文献   

9.
青藏高原古近纪-新近纪古湖泊的特征及分布   总被引:1,自引:0,他引:1  
  相似文献   

10.
随着雅鲁藏布江缝合带的碰撞闭合,青藏高原进入了超碰撞阶段,伴随着西瓦里克A型俯冲带的形成和发展,导致藏南地壳的大幅度增厚和整个青藏高原的强烈隆升,而增厚隆升的主要方式就是由北向南的逆冲推覆和随之相伴生的伸展剥离,逆冲推覆造就了全球最壮观的山链,而伸展剥离则形成了青藏高原特殊的盆-岭相间的地貌景观,藏南浪卡子地区在新生代超碰撞阶段形成了多层次,多期次,多式样的逆冲推覆构造和伸展剥离构造。  相似文献   

11.
Early Cenozoic Tectonics of the Tibetan Plateau   总被引:1,自引:0,他引:1  
Geological mapping at a scale of 1:250000 coupled with related researches in recent years reveal well Early Cenozoic paleo-tectonic evolution of the Tibetan Plateau. Marine deposits and foraminifera assemblages indicate that the Tethys-Himalaya Ocean and the Southwest Tarim Sea existed in the south and north of the Tibetan Plateau, respectively, in Paleocene-Eocene. The paleooceanic plate between the Indian continental plate and the Lhasa block had been as wide as 900km at beginning of the Cenozoic Era. Late Paleocene transgressions of the paleo-sea led to the formation of paleo-bays in the southern Lhasa block. Northward subduction of the Tethys-Himalaya Oceanic Plate caused magma emplacement and volcanic eruptions of the Linzizong Group in 64.5-44.3 Ma, which formed the Paleocene-Eocene Gangdise Magmatic Arc in the north of Yalung-Zangbu Suture (YZS), accompanied by intensive thrust in the Lhasa, Qiangtang, Hoh Xil and Kunlun blocks. The Paleocene-Eocene depression of basins reached to a depth of 3500-4800 m along major thrust faults and 680-850 m along the boundary normal faults in central Tibetan Plateau, and the Paleocene-Eocene depression of the Tarim and Qaidam basins without evident contractions were only as deep as 300-580 m and 600-830 m, respectively, far away from central Tibetan Plateau. Low elevation plains formed in the southern continental margin of the Tethy-Himalaya Ocean, the central Tibet and the Tarim basin in Paleocene-Early Eocene. The Tibetan Plateau and Himalaya Mts. mainly uplifted after the Indian-Eurasian continental collision in Early-Middle Eocene.  相似文献   

12.
Dextral-slip in the Nyainqentangiha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentangiha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentangiha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhunzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, Damxung-Yangbajain and Angan graben systems that pass east of the Nyainqentangiha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.  相似文献   

13.
Through a comprehensive study of magnetostratigraphy and sedimentology of several basins in the northeastern Tibetan Plateau, we reveal that the study area mainly experienced six tectonic uplift stages at approximately 52 Ma, 34–30 Ma, 24–20 Ma, 16–12 Ma, 8–6 Ma, and 3.6–2.6 Ma. Comprehensive analyses of pollen assemblages from the Qaidam, Linxia, Xining, and West Jiuquan Basins show that the northeastern Tibetan Plateau has undergone six major changes in vegetation types and climate: 50–40 Ma for the warm-humid forest vegetation, 40–23 Ma for the warm-arid and temperate-arid forest steppe vegetation, 23–18.6 Ma for the warm-humid and temperatehumid forest vegetation, 18.6–8.5 Ma for the warm-humid and cool-humid forest steppe vegetation, 8.6–5 Ma for the temperate sub-humid savanna steppe vegetation, and 5–1.8 Ma for the cold-arid steppe vegetation. Comprehensive comparisons of tectonic uplift events inferred from sedimentary records, climatic changes inferred from pollen, and global climate changes show that in the northeastern Tibetan Plateau the climate in the Paleogene at low altitude was mainly controlled by the global climate change, while that in the Neogene interval with high altitude landscapes of mountains and basins is more controlled by altitude and morphology.  相似文献   

14.
青藏高原的新生代火山作用是印度-亚洲大陆碰撞的火山响应,它显示了系统的时、空变化。随着印度-亚洲大陆碰撞从~65 Ma的接触-碰撞(即"软碰撞")转变到~45 Ma的全面碰撞(即"硬碰撞"),火山作用也逐渐从钠质+钾质变为钾质-超钾质+埃达克质。65~40 Ma的钾质和钠质熔岩主要分布于藏南的拉萨地块,少量分布于藏中的羌塘地块。从45~26 Ma,在藏中的羌塘地块中广泛发育钾质-超钾质熔岩和少量埃达克岩。随后的碰撞后火山作用向南迁移,在拉萨地块中产生~26~10 Ma间的同时代超钾质和埃达克质熔岩。尔后,从~18 Ma始,钾质和少量埃达克质火山作用重新向北,在西羌塘和松潘-甘孜地块中呈广泛和半连续状分布。此种时-空变异对形成青藏高原的深部地球动力学过程提供了重要约束。该过程包括:已消减的新特提斯大洋板片的回转、断离及随后增厚拉萨岩石圈根的去根作用,及因此而造成的印度岩石圈向北下插。青藏高原的隆升是自南向北穿时发生的。高原南部被创建于渐新世晚期,并保持至今;直到中新世中期,由于下插印度岩石圈的持续向北推挤,西羌塘和松潘-甘孜岩石圈的下部开始塌陷和拆离,高原北部才达到其现今的高度和规模。  相似文献   

15.
Tectonics and Topography of the Tibetan Plateau in Early Miocene   总被引:1,自引:0,他引:1  
Early Miocene stratigraphy, major structural systems, magmatic emplacement, volcanic eruption, vegetation change and paleo-elevation were analyzed for the Tibetan Plateau after regional geological mapping at a scale of 1:250,000 and related researches, revealing much more information for tectonic evolution and topographic change of the high plateau caused by Indian-Asian continental collision. Lacustrine deposits of dolostone, dolomite limestone, limestone, marl, sandstone and conglomerate of weak deformation formed extensively in the central Tibetan Plateau, indicating that vast lake complexes as large as 100,000–120,000 km2 existed in the central plateau during Early Miocene. Sporopollen assemblages contained in the lacustrine strata indicate the disappearance of most tropical-subtropical broad-leaved trees since Early Miocene and the flourishing of dark needleleaved trees during Early Miocene. Such vegetation changes adjusted for latitude and global climate variations demonstrate that the central Tibetan Plateau rose to ca. 4,000–4,500 m and the northeastern plateau uplifted to ca. 3,500–4,000 m before the Early Miocene. Intensive thrust and crustal thickening occurred in the areas surrounding central Tibetan Plateau in Early Miocene, formed Gangdise Thrust System(GTS) in the southern Lhasa block, Zedong-Renbu Thrust(ZRT) in the northern Himalaya block, Main Central Thrust(MCT) and Main Boundary Thrust(MBT) in the southern Himalaya block, and regional thrust systems in the Qaidam, Qilian, West Kunlun and Songpan-Ganzi blocks. Foreland basins formed in Early Miocene along major thrust systems, e.g. the Siwalik basin along MCT, Yalung-Zangbu Basin along GTS and ZRT, southwestern Tarim depression along West Kunlun Thrust, and large foreland basins along major thrust systems in the northeastern margin of the plateau. Intensive volcanic eruptions formed in the Qiangtang, Hoh-Xil and Kunlun blocks, porphyry granites and volcanic eruptions formed in the Nainqentanglha and Gangdise Mts., and leucogranites and granites formed in the Himalaya and Longmenshan Mts. in Early Miocene. The K2O weight percentages of Early Miocene magmatic rocks in the Gangdise and Himlayan Mts. are found to increase with distance from the MBT, indicating the genetic relationship between regional magmatism and subduction of Indian continental plate in Early Miocene.  相似文献   

16.
青藏高原新生代火山活动的深部力学背景   总被引:2,自引:0,他引:2  
为了研究火山形成基本要素——岩浆运移通道的形成, 基于重力异常反演的青藏高原下地壳底部的地幔对流应力场, 结合地壳破裂形成机理和对流应力场与青藏高原新生代火山分布的关系, 以及青藏高原下地幔对流演化的数值模拟结果, 分析了高原火山岩浆运移通道产生的深部力学机制.研究表明, 高原下地幔对流应力场存在两个大的拉张区, 高原中部和北部的火山岩均分布于拉张应力区.南部的林子宗火山区对应了印度板块与欧亚大陆碰撞前或碰撞早期高原下的地幔上升流.对流应力的量级为~100Ma, 这与导致地壳破裂的应力量级相当.所有这些证据表明, 青藏高原下地幔对流应力场可能是导致高原地壳破裂, 并发展为岩浆物质通道的主要力学机制之一.   相似文献   

17.
青藏高原中部冻土环境下土壤水分监测   总被引:1,自引:1,他引:1  
利用2006-2007年冬季青藏高原中部那曲布交(BJ)站测量的土壤水势、未冻水含量以及土壤温度资料, 分析了冻土环境下土壤水势、 未冻水含量和土壤温度三者的关系. 结果表明: 青藏高原中部冻土环境下, 土壤水势随着土壤温度及未冻水含量的变化而变化, 土壤质地是决定土壤水势的一个重要因素;未冻水含量与土壤温度保持着动态平衡, 随着土壤温度的降低, 未冻水含量减小, 土壤水势也随之减小;20 cm处砂质壤土的未冻水含量与土壤温度呈指数函数关系, 土壤水势与未冻水含量可用二次曲线拟合, 土壤水势与土壤温度呈指数函数关系;Clausius-Clapeyron方程对于计算青藏高原中部非饱和冻土水势存在局限性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号