首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 46 毫秒
1.
摩擦消能支撑钢框架结构的弹塑性地震反应时程分析   总被引:1,自引:0,他引:1  
本文分析了摩擦消能支撑及框架主体结构弹塑性本构关系,并给出了动力时程分析的计算方法。同时,对六层钢框架模型做了各种工况下的地震反应时程分析。结果表明,摩擦消能支撑钢框架(FEDBF)比抗弯钢框架(MRF)的地震作用明显降低,尤其在强震作用下效果更加明显。  相似文献   

2.
This paper presents the results of a pilot test conducted for evaluating the energy dissipation behaviour of shear panels made of low yield steel whose 0.2 per cent offset yield stress is 120 MPa. A total of six full-scale shear panels were tested with the loading condition, stiffener spacing, and magnitude of axial force as test variables. The shear panels tested yielded at a shear force that is approximately 1/3 of the yield shear force of equivalent shear panels made of common mild steel. Shear panels with proper stiffener arrangement exhibited stable hysteresis, thus ensuring large energy dissipation capacity. Sufficient strain hardening was observed in the shear panels tested, with their energy dissipation capacity about 1.5 times larger than that of an equivalent linear-elastic and perfect-plastic system. Plate buckling did not lead the shear panels to immediate degradation in their energy dissipation capacity. Post-buckling resistance was found to be a subject that requires further studies for quantifying the performance of shear panels made of low yield stress steel as hysteretic dampers.  相似文献   

3.
Approximate formulae for the estimation of lateral displacements at first yielding of plane steel frames under seismic excitations are provided for use in a performance based seismic design and more particularly, in a direct displacement based seismic design of these structures. These formulae, which are functions of the geometrical and design properties of the frames, are derived on the basis of seismic response data obtained with the aid of extensive dynamic inelastic analyses involving 36 moment resisting and 36 x-braced plane steel frames with steel grade S235, S275 and S355 under 84 ordinary seismic ground motions. Comparison of the proposed formulae against other simpler existing formulae, reveals the higher accuracy of the proposed ones.  相似文献   

4.
The use of energy dissipation systems for the seismic control of steel structures represents a valid alternative to conventional seismic design methods. The seismic devices currently employed are mostly based on the metallic yielding technology due to the large feasibility and efficiency they can provide. Within this context, in the current paper an innovative solution based on the adoption of low‐yield‐strength pure aluminium shear panels (SPs) for seismic protection of steel moment‐resisting frames is proposed and investigated. In order to prove the effectiveness of the system, a wide numerical study based on both static and dynamic non‐linear analyses has been carried out, considering a number of different frame‐to‐shear panel combinations, aiming at assessing the effect of the main influential parameters on the seismic response of the structure. The obtained results show that the contribution provided by aluminium SPs is rather significant, allowing a remarkable improvement of the seismic performance of the structure in terms of stiffness, strength and ductility, with the possibility to strongly limit the damage occurring in the members of moment‐resisting frames. In particular, it is clearly emphasized that the stiffening effect provided by SPs allows a more rational design procedure to be adopted, since the serviceability limit state check does not lead to unavoidable and uneconomical increase of the size of main structural members. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The fundamental period has a primary role in seismic design and assessment as it is the main feature of the structure that allows one to determine the elastic demand and, indirectly, the required inelastic performance in static procedures. In fact, the definition of easy to manage relationships for the assessment of the elastic period has been the subject of a significant deal of both experimental and numerical/analytical studies, some of which have been acknowledged by codes and guidelines worldwide. Moreover, this kind of information is useful for territorial-scale seismic loss assessment methodologies. In the majority of cases, the assessment of the period is considered as function of the structural system classification and number of storeys or height. Reinforced concrete structures, comprising most of the building stock in Italy and in seismic prone areas in Europe and in the Mediterranean region, were built after the Second World War and are designed with obsolete seismic codes, if not for gravity loads only. Therefore, a class of buildings featuring the same height and/or number of storeys may show a significant variability of the structural system. This, along with the contribution of the stair module, may affect the elastic periods in the two main directions of a three-dimensional building. In the study presented these issues are investigated with reference to a population of existing RC structures designed acknowledging the practice at the time of supposed construction (e.g., simulated design) and with reference to the relative enforced code. The elastic period is evaluated for both main directions of the buildings of the considered sample, and regression analysis is employed to capture the dependency of the elastic dynamic properties of the structures as a function of mass and stiffness.  相似文献   

6.
This article presents a method for the direct displacement-based design of steel moment resisting frames, with specific consideration of beam-to-column joint characteristics. The method can be used for steel frames having any type of beam-to-column joints, from rigid and full-strength to semi-rigid and partial-strength. The plastic rotation capacity of the joints is explicitly taken into account within the performance criteria for the design. To assess the accuracy of the method in controlling performance, case study structures were first designed and subsequently analysed using non-linear dynamic analysis with a set of real accelerograms. For all cases, the mean of peak inter-storey drift demands and the mean of peak plastic rotation demands on joints were controlled in accordance with the limits set during design. The results obtained demonstrate that the proposed method is appropriate for the performance-based seismic design of steel moment resisting frames with different joint typologies.  相似文献   

7.
The seismic behavior of steel reinforced high strength and high performance concrete(SRHC)frame columns was investigated through pseudo-static experiments of 16 frame columns with various shear span ratios,axial compression ratios,concrete strengths,steel ratios and stirrup ratios.Three kinds of failure mechanisms are presented and the characteristics of experimental hysteretic curves and skeleton curves with different design parameters are discussed.The columns’ductility and energy dissipation were quantitatively evaluated based on seismic resistance.The research results indicate that SRHC frame columns can withstand extreme bearing capacity,but the abilities of ductility and energy dissipation are inferior because of SRHC’s natural brittleness.As a result,the axial load ratio should be restricted and some construction measures adopted,such as increasing the stirrup ratio.This research established effect factors on the bearing capacity of SPHC columns.Finally,an algorithm for obtaining ultimate bearing capacity using the flexural failure mode is established based on a modified planesection assumption.The authors also established equations to determine shearing baroclinic failure and shear bond failure based on the accumulation of the axial load force distribution ratio.The calculated results of shear bearing capacity for different failure modes were in good agreement with the experimental results.  相似文献   

8.
The coupled steel plate shear wall (C-SPSW) configuration has been investigated by researchers as a means of improving the overturning stiffness and architectural flexibility of SPSW structures. While C-SPSWs have been shown to exhibit excellent seismic performance, the fabrication cost associated with the high number of moment-resisting connections used in such systems is a potential detraction to their use as an economical solution. Past research has shown that the hysteresis response of SPSWs with simple frame connections is significantly pinched, and as such, most seismic codes prohibit their use in high seismic areas. However, when used in the C-SPSW configuration, a dual system is formed in which the coupling beams not only improve resistance to overturning but also provide substantial lateral strength and energy dissipation capacity. This paper presents an exploration of the potential to improve the economy of C-SPSWs by using the simple boundary frame connections. First, employing the principles of plastic analysis, an attempt is made to quantify the contribution of the coupling beams to the overall lateral load resistance of the system. Then, to evaluate the seismic performance of such C-SPSW systems and allow for the comparison with that of the C-SPSWs with rigid frames, several prototypes are designed and analyzed using a series of nonlinear response history and pushover analyses. The results indicated that the C-SPSWs with simple boundary frames exhibited satisfactory seismic performance comparable with that of the C-SPSWs with rigid frames under both the 10/50 and 2/50 hazard levels, while allowing for reduced fabrication costs.  相似文献   

9.
Bulletin of Earthquake Engineering - A structure may be subject to several aftershocks after a mainshock. In many seismic design provisions, the effect of the seismic sequences is either not...  相似文献   

10.
Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames (SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance criteria for the Basic Safety Objective (BSO) specified in FEMA 356, the minimum number of upgraded connections and their locations in an SMRF with brittle connections are determined by evolutionary computation. The performance of the proposed optimal retrofitting model is evaluated on the basis of the energy dissipation capacities, peak roof drift ratios, and maximum interstory drift ratios of structures before and after retrofitting. In addition, a retrofit efficiency index, which is defined as the ratio of the increment in seismic performance to the required retrofitting cost, is proposed to examine the efficiencies of the retrofit schemes derived from the model. The optimal seismic retrofit model is applied to the SAC benchmark examples for threestory and nine-story SMRFs with brittle connections. Using the retrofit efficiency index proposed in this study, the optimal retrofit schemes obtained from the model are found to be efficient for both examples in terms of energy dissipation capacity, roof drift ratio, and maximum inter-story drift ratio.  相似文献   

11.
The present paper investigates the seismic reliability of the application of buckling restrained braces (BRBs) for seismic retrofitting of steel moment resisting framed buildings through fragility analysis. Samples of regular three‐storey and eight‐storey steel moment resisting frames were designed with lateral stiffness insufficient to comply with the code drift limitations imposed for steel moment resisting frame systems in earthquake‐prone regions. The frames were then retrofitted with concentrically chevron conventional braces and BRBs. To obtain robust estimators of the seismic reliability, a database including a wide range of natural earthquake ground motion records with markedly different characteristics was used in the fragility analysis. Nonlinear time history analyses were utilized to analyze the structures subjected to these earthquake records. The improvement of seismic reliability achieved through the use of conventional braces and BRBs was evaluated by comparing the fragility curves of the three‐storey and eight‐storey model frames before and after retrofits, considering the probabilities of four distinct damage states. Moreover, the feasibility of mitigating the seismic response of moment resisting steel structures by using conventional braces and BRBs was determined through seismic risk analysis. The results obtained indicate that both conventional braces and especially BRBs improve significantly the seismic behavior of the original building by increasing the median values of the structural fragility curves and reducing the probabilities of exceedance of each damage state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号