首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Data provided by accelerometric networks are important for seismic hazard assessment. The correct use of accelerometric signals is conditioned by the station site metadata quality (i.e., soil class, VS30, velocity profiles, and other relevant information that can help to quantify site effects). In France, the permanent accelerometric network consists of about 150 stations. Thirty-three of these stations in the southern half of France have been characterized, using surface-wave-based methods that allow derivation of velocity profiles from dispersion curves of surface waves. The computation of dispersion curves and their subsequent inversion in terms of shear-wave velocity profiles has allowed estimation of VS30 values and designation of soil classes, which include the corresponding uncertainties. From a methodological point of view, this survey leads to the following recommendations: (1) perform both active (multi-analysis surface waves) and passive (ambient vibration arrays) measurements to derive dispersion curves in a broadband frequency range; (2) perform active acquisitions for both vertical (Rayleigh wave) and horizontal (Love wave) polarities. Even when the logistic contexts are sometimes difficult, the use of surface-wave-based methods is suitable for station-site characterization, even on rock sites. In comparison with previous studies that have mainly estimated VS30 indirectly, the new values here are globally lower, but the EC8-A class sites remain numerous. However, even on rock sites, high frequency amplifications may affect accelerometric records, due to the shallow relatively softer layers.  相似文献   

2.
Sites with a limited overburden over a stiff basement are of particular relevance for seismic site response. The characterization of such stratigraphies by means of surface wave methods poses some difficulties in interpretation. Indeed the presence of sharp seismic contrasts between the sediments and the shallow bedrock is likely to cause a relevance of higher modes in the surface wave apparent dispersion curve, which must be properly taken into account in order to provide reliable results. In this study a Monte Carlo algorithm based on a multimodal misfit function has been used for the inversion of experimental dispersion curves. Case histories related to the characterization of stations of the Italian accelerometric network are reported. Spectral ratios and amplification functions associated to each site are moreover evaluated to provide an independent benchmark test. The results show the robustness of the inversion method in such non-trivial conditions and the possibility of getting an estimate of uncertainty related to solution non-uniqueness.  相似文献   

3.
The duration of strong motion has a significant influence on the severity of ground shaking. In this work, a combination of average values of four geophysical properties of site (Standard Penetration Test (SPT) blow count, primary wave velocity, shear wave velocity, and density of soil) including hypocentral distance of less than 50 km and magnitudes more than 5.0 from Japanese ground motion records were used for development of neural network model, to estimate duration of strong ground motion. Since majority of strong motion databases provide only average shear wave velocity for site characterization, an attempt has also been made to train the neural network with magnitude, hypocentral distance and average shear wave velocity as three input variables. Results obtained from this study show that the duration of strong motion is mostly dependent on average shear wave velocity rather than other geophysical properties of site.  相似文献   

4.
Surface wave tests are non-invasive seismic techniques that have traditionally been used to determine the shear wave velocity (i.e. shear modulus) profile of soil deposits and pavement systems. Recently, Rix et al. [J. Geotech. Geoenviron. Engng 126 (2000) 472] developed a procedure to obtain near-surface values of material damping ratio from measurements of the spatial attenuation of Rayleigh waves. To date, however, the shear wave velocity and shear damping ratio profiles have been determined separately. This practice neglects the coupling between surface wave phase velocity and attenuation that arises from material dispersion in dissipative media. This paper presents a procedure to measure and invert surface wave dispersion and attenuation data simultaneously and, thus, account for the close coupling between the two quantities. The methodology also introduces consistency between phase velocity and attenuation measurements by using the same experimental configuration for both. The new approach has been applied at a site in Memphis, TN and the results obtained are compared with independent measurements.  相似文献   

5.

获取准确的近地表横波速度对复杂地表条件下弹性波地震数据处理和成像非常重要.在浅层面波工程勘探中通过反演提取的频散曲线可以获得近地表横波速度结构.在多道面波频散曲线分析中, 频散关系拾取的精度直接影响速度反演结果的可靠性.本文在多道面波叠加及自动拾取频散曲线基础上, 提出了基于面波频散曲线聚类分析的近地表横波速度反演方法.该方法充分考虑了低信噪比条件下面波频散曲线的不确定性, 通过在频散曲线拾取中引入曼哈顿距离K-Means聚类算法提高频散曲线拾取的准确性.采用多道多窗口叠加技术提高了面波反演对横向速度变化的适应性, 通过聚类算法和多窗口叠加提高反演的可靠性, 聚类算法获得较准确的频散曲线更利于后续横波速度反演过程.模拟数据算例对比表明本文提出的方法比常规算法效果更好, 精度更高.将提出的方法应用于工程勘探和油气勘探的面波数据反演中, 结果也验证了该方法的有效性.

  相似文献   

6.
This paper deals with the investigation of the effect of surface stress and conductivity on the propagation of surface wave in isotropic, homogeneous, elastic media under the action of a primary magnetic field. Formulation of the general surface wave propagation problem has been made, and the corresponding frequency equation has been derived. Frequency equations for Rayleigh wave, surface shear wave and Stoneley wave have been deduced from that of general surface wave as special cases. The effects of surface stress and magnetic field on the wave velocities and attenuation factors of Rayleigh wave and surface shear wave are shown by numerical calculations and graphs. Some important wave velocity equations, as obtained by other authors, have been deduced as special cases from the wave velocity equation for Stoneley wave. It is found that the combined effect of surface stress and magnetic field modulates the wave velocity ratios and attenuation factors of Rayleigh wave and surface shear wave to a considerable extent.  相似文献   

7.
寇岚  张进 《地震工程学报》2019,41(5):1259-1265
利用重力异常反演测试三维地震波速度结构,存在解不唯一、可靠性不高的问题。将面波反演充分融合到重力异常反演方程中,降低传统反演方法的非唯一性,并提升可靠性。以川滇地区为例,采用融合后的重力异常反演方法分析三维地震波速度结构。通过速度和密度的关系转换,得到对应的重力异常数据。由于面波频射数据主要对地震波横波速度敏感,因此将重力异常数据和初始横波速度相连,依据地震波速度和岩石密度之间的关系,获取重力异常反演方程,用于分析速度结构。选取21.6°~34.2°N、97.1°~105.9°E范围内的川滇地区活动块体作为实验数据,经过实验分析发现:使用该方法迭代反演川滇地区地壳上地幔顶部横波速度,重力异常数据和面波频射数据的残差值分别是6.24 mGal和0.027 km/s,实际拟合效果较好;分析该地区不同深度切面横波速度发现,在24 km深度处,上地壳中含有相对低速层,在44 km深度处,中下地壳中存在低速层;且该方法分析川滇地区三维地震波速度结构解的分辨率较高。  相似文献   

8.
The use of MASW method in the assessment of soil liquefaction potential   总被引:4,自引:0,他引:4  
The multi-channel analysis of surface wave (MASW) method is a non-invasive method recently developed to estimate shear wave velocity profile from surface wave energy. Unlike conventional SASW method, multi-station recording permits a single survey of a broad depth range and high levels of redundancy with a single field configuration. An efficient and unified wavefield transform technique is introduced for dispersion analysis and on site data quality control. The technique was demonstrated in the assessment of soil liquefaction potential at a site in Yuan Lin, Taiwan. The shear wave velocity and liquefaction potential assessments based on MASW method compares favorable to that based on SCPT shear wave measurements. Two-dimensional shear wave velocity profiles were estimated by occupying successive geophone spreads at several sites in central western Taiwan, at some of which sand boils or ground cracks occurred during 1999 Chi Chi earthquake. Liquefaction potential analysis based on MASW imaging was shown to be effective for estimating the extent of potential liquefaction hazard.  相似文献   

9.
Surface wave methods gained in the past decades a primary role in many seismic projects. Specifically, they are often used to retrieve a 1D shear wave velocity model or to estimate the VS,30 at a site. The complexity of the interpretation process and the variety of possible approaches to surface wave analysis make it very hard to set a fixed standard to assure quality and reliability of the results. The present guidelines provide practical information on the acquisition and analysis of surface wave data by giving some basic principles and specific suggestions related to the most common situations. They are primarily targeted to non-expert users approaching surface wave testing, but can be useful to specialists in the field as a general reference. The guidelines are based on the experience gained within the InterPACIFIC project and on the expertise of the participants in acquisition and analysis of surface wave data.  相似文献   

10.
Shear wave velocity (Vs) measurements from seismic piezocone penetration (SCPTU) soundings have been increasingly used for site characterization and liquefaction potential assessments. Several sites in Tangshan region, China liquefied during the Tangshan earthquake, Mw=7.8 in 1976 and these sites were characterized recently using the SCPTU device. Other sites in the same region where liquefaction was not observed are also included in the present field investigations. Three liquefaction assessment models-based on measured shear wave velocity, shear modulus and tip resistance parameters of SCPTU are evaluated in this paper for their accurate predictions of liquefaction or non-liquefaction at the test sites. Analyses showed that the shear wave velocity—liquefaction resistance model with normalized overburden vertical stress have yielded a success rate of 78% in predicting liquefied site cases and another similar approach with mean stress based normalization has a success rate of 67%. The correlation of qc/Go-CRR7.5 based on geological age has correctly assessed the liquefaction potential at most sites considered in this research. Overall, all three models based on shear wave velocity, shear modulus and cone tip resistance are proven valuable in the assessments of liquefaction at the present test sites in the Tangshan region.  相似文献   

11.
The spectral analysis of surface wave (SASW) developed in the early eighties has opened the way to the use of surface waves for the definition of shear wave velocity profiles in soil deposits or pavement structures without the need of any borings or intrusion. The SASW testing procedure was designed to minimize the contribution of higher modes and thus assumes that the Rayleigh waves which propagate at the surface belong only to the fundamental mode. Several studies have however demonstrated that, in some conditions, higher Rayleigh modes can contribute significantly to the dispersion curve. Different tests configurations exist today to deal with Rayleigh mode problem by the use of an array of receivers. In spite of that, the SASW configuration remains attractive due to the limited number of receivers, as well as, the Rayleigh modes contributing in SASW records configuration can be identified by multiple-filter technique and isolated using time-variable filters. The proposed techniques are first validated by simulated records and then applied to SASW records obtained in the field. The study confirms that higher modes can participate and even dominate in SASW records. An important contribution of higher Rayleigh modes can also exist, even if the shear wave velocity increases regularly with depth. The higher Rayleigh modes can significantly affect the accuracy of the shear wave velocity profile if they are not properly identified and separated. A multi-mode inversion process is shown to be important to have an accurate soil characterization.  相似文献   

12.
This paper describes the analyses of the single-station ambient-vibration measurements performed on the Italian accelerometric network to detect site resonance phenomena potentially affecting earthquake recordings. The use of low cost, high quality microtremor measurement can be helpful to discriminate among soil classes, since several classification schemes based on resonance frequencies were proposed in the last decades. Operatively, in the framework of the Italian Strong Motion Database project (DPC-INGV 2007–2009 S4; ), soil resonance frequencies have been evaluated from more than 200 ambient vibration measurements in correspondence of accelerometric stations included in ITACA (). The noise recordings have been analyzed using the same numerical protocol in order to standardize the results. Particular attention has been paid to evaluate the quality of measurements and to develop an on-purpose mathematical tool to automatically estimate the peaks in the horizontal-to-vertical spectral ratio (HVSR) curve. The reliability of the resonance frequencies from HVSR has been tested by comparing estimates provided by independent methods (modeling or earthquake recordings). The test confirmed the reliability of the microtremor HVSR for assessing the resonance frequencies of the examined sites.  相似文献   

13.
Modeling shear rigidity of stratified bedrock in site response analysis   总被引:1,自引:0,他引:1  
Where a distinct soil-rock interface exists, the bedrock medium is commonly treated as elastic half-space and the bedrock surface as the lower boundary of the soil-column model for site response analyses (or the lower boundary of the finite element model for soil-structure interaction analyses). While shear wave velocity in bedrock varies with depth, there has been no consensus amongst scientists and practitioners over the value of “effective depth” into bedrock at which the “half-space” shear wave velocity value should be taken for modeling purposes. This paper reports an interesting and important observation that the effective depth into bedrock is sensitive to the shear wave velocity profile of the overlying soil sediments. A simple and heuristic method, namely Resonant Period Equivalence (RPE) Method, is proposed herein for representing a stratified elastic bedrock of inhomogeneous properties by an equivalent homogeneous elastic half-space medium, which is characterized by a single equivalent shear wave velocity (VR) value. The proposed calculation method has been verified by extensive comparative analyses involving the use of programs SHAKE and NERA and employing the complete shear wave velocity models of both the soil sediments and the underlying stratified bedrock.  相似文献   

14.
Shear wave velocity–depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites.  相似文献   

15.
基于杭州市丰富的场地钻孔剪切波速资料,采用3种常见的剪切波速与埋深回归分析模型,分析杭州地区5类常规土在场地分类和场地未分类情况下的最优拟合公式和预测范围,并对推荐模型进行可靠性验证,对常规粉质粘土和粉砂进行地区差异性分析。研究结果表明:本文推荐的剪切波速与埋深关系公式具有良好的可靠性;地区、岩土类型和预测深度均对剪切波速与埋深关系模型的可靠性产生显著影响,故应用时应优先选用本地区统计模型,如若未有,则需根据已有资料,对选用模型进行岩土类型和适应预测深度范围验证,以保证所选模型的可靠性;受地区、岩土类型和预测深度的影响,考虑场地分类并不一定提高统计模型的预测精度,在实际工程应用中具有不确定性。  相似文献   

16.
A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high “subsoil anisotropy” (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.  相似文献   

17.
In this paper, an analytical, numerical and experimental approach for identifying soil profile characteristics by using system identification and free field records, is presented. First, a theoretical soil amplification function for two sites is defined and expressed in terms of the different parameters of the layers constituting the soil profiles (thickness, damping ratio, shear wave velocity and unit weight). Then, this function is smoothed with an analogous function obtained from experimental data by using the least squares minimization technique. The identification of the parameters is performed by solving, numerically, a non-linear optimisation problem. To demonstrate the numerical efficiency and the validity of this approach, two examples are treated. The first one consists in the identification of characteristics of a given uniform soil layer. The second example consists in the experimental validation of this approach with the data recorded within the Garner Valley Down Hole Array (GVDA). Finally, this approach is applied to identify, simultaneously, soil profile characteristics of sites from only a single soil acceleration record at free surface of each site. This procedure is utilised to identify soil profile characteristics of sites by using strong ground motions data recorded during the recent Boumerdes earthquake of May 21, 2003.  相似文献   

18.
Peak amplitudes of surface strains during strong earthquake ground motion can be approximated by ε = Aνmax1, where νmax is the corresponding peak particle velocity, β1 is the velocity of shear waves in the surface layer, and A is a site specific scaling function. In a 50 m thick layer with shear wave velocity β1 300 m/s, A 0·4 for the radial strain εrr, A 0·2 for the tangential strain εrθ, and A 1·0 for the vertical strain, εz. These results are site specific and representative of strike slip faulting and of soil in Westmoreland, in Imperial Valley, California. Similar equations can be derived for other sites with known shear wave velocity profile versus depth.  相似文献   

19.
Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs) is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.  相似文献   

20.
This paper discusses variability and accuracy of site response predictions performed using shear wave velocity (Vs) profiles derived from non-unique surface wave inversions and other commonly used statistical methods of accounting for epistemic uncertainty and aleatory variability in Vs. Specifically, linear and equivalent linear site response analyses were performed on the following three classes of Vs profiles: (1) 350 Vs profiles developed by performing multiple surface wave inversions, each with a unique set of layering parameters, on a common dispersion dataset, (2) two upper/lower range base-case Vs profiles developed by systematically increasing or decreasing the solution Vs profile by 20%, and (3) 100 Vs profiles developed using the Vs randomization procedure proposed by Toro (1995) [26]. Vs profiles derived from surface wave inversions generally yielded accurate site response estimates with minimal variability, so long as their theoretical dispersion data fit the experimental dispersion data well. On the other hand, the upper/lower range and randomized Vs profiles generally produced inaccurate and highly variable site response predictions, although the inclusion of site-specific parameters in the randomization model improved the results. At real sites where substantial aleatory variability is anticipated and/or the epistemic uncertainty is quite high, the site response estimates associated with the randomized and/or upper/lower range Vs profiles may be deemed acceptable. However, if the experimental dispersion data and horizontal-to-vertical spectral ratios are shown to be consistent over the footprint of a site, it may be possible to significantly reduce the uncertainty associated with the input Vs profile and the resulting uncertainty in the site response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号