首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
喜马拉雅造山带是地球上海拔最高、规模最大的陆陆板块俯冲碰撞带在这条长达2 500 km的板块边界上,近年来多次发生破坏性地震,造成大规模的滑坡、房屋倒塌等次生灾害,给人民生命和财产安全造成严重的威胁。分别选取尼泊尔喜马拉雅、喜马拉雅东构造结和喜马拉雅西构造结地区近期发生的3个地震震群作为研究实例,基于中国科学院青藏高原研究所在研究区架设的区域流动地震台站记录的波形资料,对地震的震源位置和震源机制解进行计算。结果表明,在尼泊尔喜马拉雅地区,主喜马拉雅逆冲断裂是大地震的主要发震构造;东构造结地区的地震以逆冲和走滑型为主,表明印度板块向北东方向的逆冲推覆和青藏高原向东南逃逸的侧向挤出是该地区的主要构造背景;西构造结地区中深源地震多发,揭示了高角度大陆深俯冲的几何形态。  相似文献   

2.
Shillong Plateau in India is tectonically and geologically interesting entity in the subducted front of Indian Plate below Burmese Plate to the southeast and Tibetan Plate to the north and associated with thrusts and shears along the plate boundaries. Horse-tail geometry in the foothills of the Arunachal Himalaya, east of Jia Bhareli river, associated with south-convex foothill ranges in the eastern Himalaya and exactly similar structural geometry in the eastern part of Shillong Plateau in Meghalaya seems to develop due to resistance received by the plateau in its eastward journey. Wide separation of Karbi Anglong Plateau and Shillong Plateau to the southeast as compared to northwestern part defines the shape of Kopili graben. Low seismic activity in southeastern part of Shillong Plateau might be related to stress released field generated by its clockwise rotation. Satellite derived images and digital elevation data from Landsat ETM+ and SRTM data shows that the central part of Shillong Plateau possesses young topography with strong structural fabrics along with relatively high topography aligning NE-SW following Kolkota-Pabna-Mymansingh High and if extended passes through western part of Arunachal Pradesh in eastern Himalayas. This alignment has been observed in Precambrian gneissic complex west of the Proterozoic intracratonic Shillong Basin. The epicentral plot for the period 1918 to 2009 shows their high concentration within the Shillong Plateau aligning along this trend. The active geodynamics of Shillong Plateau is reflected in its seismic activity pattern in relation with the structural fabrics, northward migration of the Brahmaputra in the north front of the Plateau and by shrinking pattern of Chandubi Lake in the Kulsi river catchment, a north-flowing tributary of the Brahmaputra in the north-central part of the plateau.  相似文献   

3.
GEOLOGY OF THE NORTHERN ARUN TECTONIC WINDOW1 BordetP .Recherchesg啨ologiquesdansl’HimalayaduN啨pal,r啨gionduMakalu[R].EditionsduCNRS ,Paris ,196 12 75 . 2 BordetP .G啨ologiedeladalleduTibet (Himalayacentral) [J].M啨moireshorss啨riedelaSociet啨g啨ologiquedeFrance,1977,8:2 35~ 2 5 0 . 3 BurcfielBC ,ChenZ ,HodgesKV ,etal.TheSouthTibetanDetachmentSystem ,Hima…  相似文献   

4.
This paper presents a combination of seismic imaging, geomorphologic, and tectonic data and an interpretation of the M = 5.1 1980 Arudy earthquake sequence putting in relation the seismicity, the inherited faults, and the geomorphologic (Würm and postwürm) markers in this region of the Pyrenees. Since the anticlockwise rotation of the regional compression axis in Oligocene time, western Pyrenees are under a dextral regime and the resulting motion is accommodated along major inherited E–W dextral strike-slip faults. The Arudy aftershocks sequence is controlled by antecedent horsetail splay faults built at the boundary between two shallow Mesozoic crustal blocks most probably due to their differing rheology. This boundary has played the role of a seismic barrier stopping the E–W slip motion. The Arudy earthquake has reactivated the eastern segment of the main E–W strike-slip fault, while the post-seismic aftershocks correspond to local relaxation processes in normal tectonic behavior.  相似文献   

5.
Previous studies and borehole temperature measurements suggest that subsurface temperature distribution on the west side of Tokyo Bay (from Tokyo to Yokohama) is higher than that of the east side (Chiba side). To understand the groundwater flow and other factors which may contribute to the subsurface temperature discrepancy such as geological setting in the study area, groundwater temperature profiles were measured in 119 boreholes around the Tokyo Bay from 2002 to 2007. The data were analyzed and compared with previous studies. Horizontal distribution of subsurface temperature at the depths of −50 and −100 m was made to show the distribution of thermal regime. A cross-section across the bay of Tokyo was made to see the isothermal lines and distribution of hydraulic heads in a vertical perspective. These results show that the highest subsurface temperature zone is in the Tokyo area, along the river valley. Subsurface temperature at the depth of 50- and 100-m below sea level in the western part of the bay is comparatively higher than its eastern side at the same elevation and distance from the bay. This fact suggests that there is a regional groundwater flow system in the area and it is strongly affected by the geological structure, particularly buried valley systems of the bay during the Paleo-Tokyo River and the topographical driving force which is the result of the different elevation of recharge areas. Groundwater discharge is concentrated along the buried valley of Paleo-Tokyo River.  相似文献   

6.
Himalayan orogenic belt is the highest and largest continental collision and subduction zone on the Earth. The Himalayan orogenic belt has produced frequent large earthquakes and caused several geohazards due to landslides and housing collapse, having an impact on the safety of life and property along a length of over 2500 km. Here we took three earthquake clusters as examples, which occurred at Nepal Himalaya, eastern Himalayan syntaxis and western Himalayan syntaxis, respectively. Here we calculated the earthquake locations and fault plane solutions based on the waveform data recorded by seismic stations deployed in source areas by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. We found that at the Nepal Himalayan, the Main Himalayan Thrust is the major tectonic structure for large earthquakes to occur. At the eastern Himalayan syntaxis, most earthquakes are of the reverse or strike-slip faulting. The major tectonic feature is the combination of the NE-dipping thrust with the southeastern escape of the Tibetan plateau. At the western Himalayan syntaxis, intermediate-depth earthquakes are active. These observations reveal the geometry of the deep subduction of the continental plate with steep dipping angle.  相似文献   

7.
A research programme underway in south–east Spain has the overall aim of developing a long-term landscape evolution model for the Tertiary depositional basins that lie within the eastern part of the Betic cordillera. As part of the work it has become apparent that there are multiple natural hazards to development in the region, and the nature and distribution of these is presently under investigation. For one hazard, namely landsliding, a database of over 300 cases has been compiled within one defined 425 km2 river catchment, namely the Río Aguas. Evaluation of the database has demonstrated that the contemporary distribution of landslides correlates with areas of steepest slopes across a range of the different lithologies. However, the “slope” component of the landscape is controlled by a wave of incision associated with a river capture event c. 100000 years ago which locally increased erosion by between 5 and 10 times. This event was a function of differential uplift between the depositional basins and resulted in over-steepened slopes within parts of the catchment which have yet to reach equilibrium in this evolving landscape.  相似文献   

8.
Groundwater samples were analyzed from 71 springs and wells as part of a larger study in a region of compressional tectonic regime. The study site covers the Peshawar basin and surroundings in the Himalayan foreland of Pakistan. The northern portion is mountainous and the water table is discontinuous in different intermontane valleys, with abundant springs (with normal and anomalous temperatures and composition). The southern part is divided into isolated basins with a number of drilled (“deep”) and dug (“shallow”) wells. Hydrochemical signatures of elevated strontium (Sr), SiO2, boron (B)—and the geothermometric signatures—all indicate a deep circulation of the emerging groundwater. Moreover, for several of the sample sites, water chemical compositions, measured spring and water well temperatures, and reservoir temperatures calculated for spring waters, all point to origin from deep horizons within the basin. Remarkable proximity of all the thermal and hydrochemical anomalies to major faults suggests that the waters ascended along these faults from greater depths. The area is a natural western extension of the Himalayan Geothermal Belt described in earlier literature for the eastern and central Himalayas.  相似文献   

9.
Based on the tectonic framework of central Japan, including the surrounding submarine areas, the space-time relationship between destructive inland earthquakes of magnitudesM 6.4 or greater and great offshore earthquakes along the Nankai trough was examined. From east to west, four tectonic lines are defined as lines linking active faults: the Itoigawa-Shizuoka tectonic line (ISTL), the Tsurugawan-Isewan tectonic line (TITL), the Hanaore-Kongo fault line (HKFL), and the Arima-Takatsuki tectonic line (ATTL). The TITL divides central Japan into the Chubu and Kinki districts, and probably extends southward to the Nankai trough. The Chubu district is subdivided into four blocks by boundary lines linking NW-SE trending active faults having left-lateral strike slip. In the Kinki district, N-S trending, active reverse, steep-dip faults are dominant in the triangular region north of the Median Tectonic line, between the TITL and HKFL, forming a basin-and-range province.

Starting from 1586 A.D., a seismic space-time sequence of high seismic activity in the Chubu district in which earthquake occurrence migrates from the eastern to western tectonic lines of central Japan was identified. The sequence also revealed that inland earthquakes preceded great offshore earthquakes which occurred along the Nankai trough. It was also found that a destructive earthquake tends to occur on the HKFL within 30 years after the occurrence on the TITL, and that the western Nankai trough generated great earthquakes ofM≥7.0 at intervals ranging from 8 to 49 years after the HKFL earthquakes. If the eastern Nankai trough is coupled with the western Nankai trough, a forthcoming greater earthquake measuringM 8.5 may be expected. Since such great earthquakes are always accompanied by large tsunamis, much attention should be focussed on possible tsunami disasters along the Pacific coast of central Japan.

Based on its tectonic structure, a tectonic model of central Japan is proposed. The seismic space-time sequence, which attempts to explain the cause of the sequential earthquake generation, is also discussed.  相似文献   


10.
喜马拉雅东构造结是全球构造活动最强烈、地质环境最复杂、地质灾害最频发的地区之一, 工程规划建设面临板块构造带的构造错断、深埋工程灾变、松动山体失稳、流域性地质灾害链等灾难性地质安全风险。如何在活动构造带内选择相对稳定与安全的场址, 实现工程规划建设与运营的地质安全风险最小化, 是当前工程地质领域的重要课题。文章系统梳理了东构造结地区重大地质安全问题, 发现传统的工程选址理论已无法满足喜马拉雅东构造结工程选址的要求, 工程选址面临地质演化过程与工程区地质建造不清、构造活动性与强震灾害风险突出、深部构造应力场与灾变研究薄弱、超高位超远程地质灾害链形势严峻等重大地质安全挑战。为此, 文章从"区域地质演化与工程地质问题" "活动断裂及工程安全风险" "复杂地应力场及工程灾变风险" "流域性地质灾害链工程风险" "东构造结工程选址理论方法"共5个方面提出工程选址主要研究方向, 为完善工程选址风险评价与防控方法提供思路。   相似文献   

11.
The frontal part of the active, wedge-shaped Indo-Eurasian collision boundary is defined by the Himalayan fold-and-thrust belt whose foreland basin accumulated sediments that eventually became part of the thrust belt and is presently exposed as the sedimentary rocks of the Siwalik Group. The rocks of the Siwalik Group have been extensively studied in the western and Nepal Himalaya and have been divided into the Lower, Middle and Upper Subgroups. In the Darjiling–Sikkim Himalaya, the Upper Siwalik sequence is not exposed and the Middle Siwalik Subgroup exposed in the Tista river valley of Darjiling Himalaya preserves a ~325 m thick sequence of sandstone, conglomerate and shale. The Middle Siwalik section has been repeated by a number of north dipping thrusts. The sedimentary facies and facies associations within the lithostratigraphic column of the Middle Siwalik rocks show temporal repetition of sedimentary facies associations suggesting oscillation between proximal-, mid- and distal fan setups within a palaeo-alluvial fan depositional environment similar to the depositional setup of the Siwalik sediments in other parts of the Himalaya. These oscillations are probably due to a combination of foreland-ward movement of Himalayan thrusts, climatic variations and mountain-ward shift of fan-apex due to erosion. The Middle Siwalik sediments were derived from Higher- and Lesser Himalayan rocks. Mineral characteristics and modal analysis suggest that sedimentation occurred in humid climatic conditions similar to the moist humid climate of the present day Eastern Himalaya.  相似文献   

12.
则木河断裂带位于青藏高原东南缘,川滇菱形地块东边界的突起上,为大型左旋走滑活动断裂,因其所处的特殊构造部位、强烈的地壳形变与断裂活动,从而具有地形复杂、构造强烈、地震活跃、次生地质灾害严重的特点。大箐断层在则木河断裂带次级断裂中活动速率最大,地处断陷河谷盆地和大箐梁子隆起区,且大箐梁子为1850年7.5级地震震中和断层枢纽运动中心,河谷保留冰川活动的遗迹,地质灾害发育,因此将大箐断层作为研究对象具有良好的典型性和代表性。通过现场调查,依据孕育地灾的地质背景条件,斜坡在地震动力作用下的响应特征和斜坡失稳的成因机制,将断裂致灾模式分为3大类,7亚类,共15种类型。大类的划分主要依据地质灾害的类型,亚类考虑灾害动力响应过程及斜坡失稳演化模式,是斜坡失稳破坏最显著的差异;小类的划分主要依据坡体的地质结构,是灾害失稳具体形式上的差异。本文较为系统地揭示了大箐断层地质灾害的成因机制及致灾模式。  相似文献   

13.
塔里木盆地北部奥陶系油气相态及其成因分析   总被引:8,自引:3,他引:5  
塔里木盆地北部地区奥陶系是最重要的勘探层系,油气资源丰富;同时油气相态复杂多样,既有凝析气藏、正常油藏,也有稠油油藏、沥青等。通过对油气藏形成演化与保存过程的系统分析,结合油气地球化学和流体包裹体等分析数据,发现油气相态的多样性与油气多期次充注与次生蚀变作用有关。提出塔北隆起的东部奥陶系存在三期油气充注过程,分别发生在加里东运动晚期-海西早期、海西运动晚期、喜马拉雅运动晚期,原油主要来源于中、上奥陶统烃源岩,天然气主要来自与寒武系烃源岩有关的液态烃的裂解;塔北隆起的中西部奥陶系的油气充注主要发生在海西运动晚期。塔北奥陶系油藏形成以后,经历了三期明显的调整改造过程:海西早期构造抬升导致志留-泥盆系遭受剥蚀,东部源自寒武系油气的古油藏遭受破坏,形成沥青;三叠系沉积前的晚海西运动,使得奥陶系生源的油藏大范围遭受降解稠化;晚喜山期,来自于满加尔坳陷的天然气自东向西充注,致使隆起东部早期形成的油藏发生强烈的气侵改造,形成次生凝析气藏。而中西部奥陶系油藏在三叠系沉积前遭受降解稠化后,一直处于沉降深埋过程,油藏得到有效保存;由于成藏时间较早,轻质组分散失较多,气油比极低,油质较稠。研究认为,油气相态的多样性主要受晚海西期构造运动的抬升造成的生物降解作用和喜马拉雅晚期构造运动造成的天然气自东向西大规模充注对油藏进行气洗改造两大过程的控制。  相似文献   

14.
东北亚是全球板块构造活动最复杂地区之一.中生代活动大陆边缘构造格架主体特点是,东部为陆缘增生带,包含碰撞造山带和增生造山带两种类型;西部为陆缘活化带,包含西伯利亚古陆东部活化区(北段),东蒙古-兴安-吉黑活化区(中段)和中-朝古陆东部活化区(南段).整体构造格架具有东西分带,南北分段,由北东向南逐渐发展的特点.华北-蒙古-兴安地区中侏罗晚期-早白垩世初的沉积-火山-沉积磨拉石,属东北亚中生代活动大陆边缘构造演历进程的组成部分,是构造体制转换的标志之一.  相似文献   

15.
印度-亚洲碰撞大地构造   总被引:90,自引:3,他引:87  
印度-亚洲碰撞是新生代地球上最为壮观的重大地质事件.碰撞及碰撞以来,青藏高原的广大地域发生了与碰撞前截然不同的变形,地貌、环境及其深部结构都发生了深刻地变化.根据青藏高原形成、周缘造山带崛起以及大量物质侧向逃逸的基本格局,作者从大陆动力学视角出发,将"印度-亚洲碰撞大地构造" 与"前碰撞大地构造"区别开来进行研究,将印...  相似文献   

16.
亚洲东部存在一个巨大的三角形地震构造区域,大体上,喜马拉雅山脉、帕米尔—天山—阿尔泰山—贝加尔和东经105°线是它的3个边界,主要覆盖中国和蒙古国西部众多高原、山脉及山间盆地。三角区内现今构造活动和地震广泛强烈,地壳破碎,显示不均匀的块体边界和块内变形;区外基本上是稳定的刚性陆块,地震很少,变形较弱,处于整体缓慢运动之中。这个宽阔的板内变形区起源于印度、菲律宾海—西太平洋和欧亚三大板块之间的动力作用以及深部地幔流的影响。向北快速运动的印度次大陆已近水平地插入到西藏板块下,沿喜马拉雅弧产生多种运动和变形,并向亚洲内部远距离地扩散。沿东经95°~100°,向北的地壳运动向东和东南方向偏转,阻截了喜马拉雅弧东端的北向运动;而在喜马拉雅弧西端,帕米尔继续向北挤进中亚,受天山—阿尔泰山—贝加尔一线西北側稳定地壳的限制,扩散的变形被中国、蒙古、俄罗斯边境地区一系列EW向和NW向的老断层吸收并在它们的西端终止。菲律宾海—西太平洋向欧亚大陆的消减-俯冲导致沿海沟-岛弧的漫长而狭窄的地震带,但对亚洲大陆的水平挤压较小,未能阻挡亚洲大陆东部向东移动。其部分原因可能是俯冲板片受到来自欧亚大陆下的ES向地幔流的推挤,这个ES向地幔流与来自印度下面的N向地幔流在西藏中部汇合并向东偏转,在大尺度上与GPS观测到的地表移动图像一致。  相似文献   

17.
The largest earthquake (Mw 8.4 to 8.6) in Himalaya reported so far occurred in Assam syntaxial bend in 1950. However, some recent studies have suggested for earthquake of magnitude Mw 9 or more in the Himalayan region. In this paper, we present a detailed analysis of seismological data extending back to 1200 AD, and show that earthquake in Himalayan region may not be expected to be as large as those of subduction zones. Also, there appears to be a lateral variation in the earthquake magnitude, being lesser in the western syntaxial bend when compared close to the eastern syntaxial bend. This is attributed to the difference in the plate boundary scenario; dominance of strike-slip and thrusting along the western syntaxis as against thrusting and remnant subduction along the eastern syntaxis.  相似文献   

18.
综合前人资料分析了川—滇构造带及其邻区地壳-上地幔速度结构与地震分布的关系。结果表明,川—滇构造带具有同青藏高原地壳-上地幔结构相似的某些特征;地震活动主要沿安宁河断裂带和小江断裂带分布。震源以永仁、渡口和会理三地所在区域最浅,向四周渐深  相似文献   

19.
中国喜马拉雅构造运动的陆内变形特征与油气矿藏富集   总被引:12,自引:0,他引:12  
贾承造 《地学前缘》2007,14(4):96-104
在前人研究的基础上,结合近年来在油气勘探中不断积累的地质资料和地质认识,提出了中国喜马拉雅构造运动的陆内变形特征及其分布规律受控于小型克拉通板块拼贴的基底结构和印/欧碰撞与太平洋板块俯冲所主导的双重控制因素;喜马拉雅构造运动的发育特征主要表现为三种动力学机制:青藏高原隆升、盆地与造山带体制和东部拉张活动。喜马拉雅构造运动的大地构造格局及其构造变形分布规律集中体现为4个构造域:青藏高原隆升区、环青藏高原盆山体系、稳定区和环西太平洋裂谷活动区。我国沉积盆地在喜马拉雅构造运动中的构造特征分为三种类型:(1)东部渤海湾、松辽等盆地受拉张构造环境控制的裂谷沉降;(2)中部四川、鄂尔多斯等盆地受青藏高原的向东推挤、盆缘冲断、盆内抬升剥蚀;(3)西部的塔里木、准噶尔、柴达木等盆地受青藏高原的向北推挤、冲断挠曲沉降,表现为克拉通单边或双边的压缩挠曲沉降与克拉通内部的冲断隆升沉降等多种盆山耦合形式。喜马拉雅构造运动控制着中国油气晚期定位与富集成藏,主要体现在:盆地的沉积与成藏,形成新生界自生自储的含油气盆地和油气藏;圈闭形成与油气运聚成藏;早期油气藏的调整和再分配;油气藏的破坏。  相似文献   

20.
为了总结大同煤田构造特征及二叠系太原组赋煤边界形成条件,结合野外露头、钻孔岩性、三维地震等资料,分析了大同煤田构造区带划分、地层结构样式、构造演化及应力场特征,明确了二叠系赋煤边界成因机制。研究表明:晚古生代以来,大同煤田主要经历了印支、燕山和喜山期3期构造运动,其中燕山期构造最为复杂,具有幕式、挤压伸展交替演化特征,控制了煤田现今的构造格局;煤田由东部逆冲断裂构造带,中部向斜-单斜构造带和西部隆起构造带组成,煤田内部断裂多为NW-NWW和NE-NEE向,前者形成时期早,规模普遍较大;不同构造期应力作用控制着二叠系煤层的赋存特征,印支早期NS向挤压作用,控制煤田东北部边界,燕山期控制煤田东缘、西缘和西南缘边界。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号