首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study the structure of a stationary and axisymmetric charge-deficient region (or a potential gap) in the outer magnetosphere of a spinning neutron star. A large electric field along the magnetic field lines is created in this potential gap and accelerates migratory electrons (e) and/or positrons (e+) to ultrarelativistic energies. Assuming that the gap is immersed in a dense soft photon field, these relativistic e± radiate γ -ray photons via inverse Compton (IC) scattering. These γ -rays, in turn, produce yet more radiating particles by colliding with ambient soft photons, leading to a pair-production cascade in the gap. The replenished charges partially screen the longitudinal electric field, which is self-consistently solved together with the distribution of e± and γ -ray photons. It is demonstrated that the voltage drop in the gap is not more than 1010 V when the background X-ray radiation is as luminous as 1037 erg s−1. However, this value increases with decreasing X-ray luminosity and attains 1012 V when the X-ray radiation is 1036 erg s−1. In addition, we find useful expressions of the spatial distribution of the particle fluxes and longitudinal electric field, together with the relationship between the voltage drop and the current density. Amazingly, these expressions are valid not only when IC scattering dominates but also when curvature radiation dominates.  相似文献   

2.
We investigate a stationary particle acceleration zone in the outer magnetosphere of an obliquely rotating neutron star. The charge depletion as a result of global current causes a large electric field along the magnetic field lines. Migratory electrons and/or positrons are accelerated by this field to radiate curvature gamma-rays, some of which collide with the X-rays to materialize as pairs in the gap. As a result of this pair-production cascade, the replenished charges partially screen the electric field, which is self-consistently solved together with the distribution of particles and gamma-rays. If no current is injected at either of the boundaries of the accelerator, the gap is located around the so-called null surface, where the local Goldreich–Julian charge density vanishes. However, we find that the gap position shifts outwards (or inwards) when particles are injected at the inner (or outer) boundary. We apply the theory to the seven pulsars whose X-ray fields are known from observations. We show that the gap should be located near to or outside of the null surface for the Vela pulsar and PSR B1951+32, so that their expected GeV spectrum may be consistent with observations. We then demonstrate that the intrinsically large TeV flux from the outer gap of PSR B0540–69 is absorbed by the magnetospheric infrared photons, causing it to be undetectable. We also point out that the electrodynamic structure and the resultant GeV emission properties of millisecond pulsars are similar to young pulsars.  相似文献   

3.
4.
5.
We present a steady one-dimensional model for a pulsar polar cap accelerator, where the field-aligned electric field and flow are solved self-consistently with a given current density. It is assumed that no particles return to the star. It is known that the space-charge-limited flow is accelerated to energies high enough to create electron–positron pairs if the assumed current density is high enough. We find that when pairs are created in such a space-charge-limited flow, the accelerating electric field is screened out within a short distance after pair creation, if the pair particle flux is larger than a critical value. We also find that a space charge density wave is excited in the screening region.
We find that a pair flux larger than the critical value M c=103–105 must be reached in a layer with thickness equal to the braking distance for the decelerating component. Therefore, the required multiplicity – the number of pairs created by one primary particle – is too large to be realized in the actual pulsar magnetosphere. We suggest that in order to obtain a localized potential drop along the polar cap magnetic flux, one needs to take into account additional effects such as wave–particle interaction or quasi-periodic pair creation.  相似文献   

6.
Helium star–compact object binaries, and helium star–neutron star binaries in particular, are widely believed to be the progenitors of the observed double-neutron-star systems. In these, the second neutron star is presumed to be the compact remnant of the helium star supernova. In this paper, the observational implications of such a supernova are discussed, and in particular are explored as a candidate γ-ray burst mechanism. In this scenario, the supernova results in a transient period of rapid accretion on to the compact object, extracting via magnetic torques its rotational energy at highly super-Eddington luminosities in the form of a narrowly beamed, strongly electromagnetically dominated jet. Compton scattering of supernova photons advected within the ejecta, and photons originating at shocks driven into the ejecta by the jet, will cool the jet and can produce the observed prompt emission characteristics, including the peak-inferred isotropic energy relation, X-ray flash characteristics, subpulse light curves, energy-dependent time lags and subpulse broadening, and late time spectral softening. The duration of the burst is limited by the rate of Compton cooling of the jet, eventually creating an optically thick, moderately relativistically expanding fireball that can produce the afterglow emission. If the black hole or neutron star stays bound to a compact remnant, late term light curve variability may be observed as in SN 2003dh.  相似文献   

7.
8.
9.
10.
11.
12.
We suggest that an extreme Kerr black hole with a mass ∼106 M, a dimensionless angular momentum     and a marginally stable orbital radius     located in a normal galaxy may produce a γ -ray burst (GRB) by capturing and disrupting a star. During the capture period, a transient accretion disc is formed and a strong transient magnetic field ∼     lasting for     may be produced at the inner boundary of the accretion disc. A large amount of rotational energy of the black hole is extracted and released in an ultrarelativistic jet with a bulk Lorentz factor Γ larger than 103 via the Blandford–Znajek process. The relativistic jet energy can be converted into γ -radiation via an internal shock mechanism. The GRB duration should be the same as the lifetime of the strong transient magnetic field. The maximum number of sub-bursts is estimated to be     because the disc material is likely to break into pieces with a size about the thickness of the disc h at the cusp     The shortest risetime of the burst estimated from this model is ∼     The model GRB density rate is also estimated.  相似文献   

13.
14.
Gamma-ray bursts are often modelled as jet-like outflows directed towards the observer; the cone angle of the jet is then commonly inferred from the time at which there is a steepening in the power-law decay of the afterglow. We consider an alternative model in which the jet has a beam pattern where the luminosity per unit solid angle (and perhaps also the initial Lorentz factor) decreases smoothly away from the axis, rather than having a well-defined cone angle within which the flow is uniform. We show that the break in the afterglow light curve then occurs at a time that depends on the viewing angle. Instead of implying a range of intrinsically different jets – some very narrow, and others with a similar power spread over a wider cone – the data on afterglow breaks could be consistent with a standardized jet, viewed from different angles. We discuss the implication of this model for the luminosity function.  相似文献   

15.
Strong γ-ray emission from cocoons of young radio galaxies is predicted for the first time. Considering the process of adiabatic injection of the shock dissipation energy and mass of the relativistic jet in active nuclei into the cocoon, while assuming thermalizing electron plasma interactions, we find that the thermal electron temperature of the cocoon is typically predicted to be of the order of ∼ MeV, and is determined only by the bulk Lorentz factor of the relativistic jet. Together with the time-dependent dynamics of the cocoon expansion, we find that young cocoons can yield thermal bremsstrahlung emissions at energies ∼MeV.  相似文献   

16.
17.
The evolutionary scenario of a neutron star magnetic field is examined assuming a spin-down induced expulsion of magnetic flux originally confined to the core, in a case in which the expelled flux undergoes ohmic decay. The nature of field evolution, for accreting neutron stars, is investigated incorporating the crustal microphysics and material movement resulting from accretion. This scenario may explain the observed field strengths of neutron stars but only if the crustal lattice contains a large amount of impurity, which is in direct contrast to the models that assume an original crustal field.  相似文献   

18.
19.
20.
It is expected that specific globular clusters (GCs) can contain up to a hundred of millisecond pulsars. These pulsars can accelerate leptons at the shock waves originated in collisions of the pulsar winds and/or inside the pulsar magnetospheres. Energetic leptons diffuse gradually through the GC Comptonizing stellar and microwave background radiation. We calculate the GeV–TeV γ-ray spectra for different models of injection of leptons and parameters of the GCs assuming reasonable, of the order of 1 per cent, efficiency of energy conversion from the pulsar winds into the relativistic leptons. It is concluded that leptons accelerated in the GC cores should produce well localized γ-ray sources which are concentric with these GCs. The results are shown for four specific GCs (47 Tuc, Ter 5, M13 and M15), in which significant population of millisecond pulsars have been already discovered. We argue that the best candidates, which might be potentially detected by the present Cherenkov telescopes and the planned satellite telescopes (AGILE, GLAST), are 47 Tuc on the Southern hemisphere, and M13 on the Northern hemisphere. We conclude that detection (or non-detection) of GeV–TeV γ-ray emission from GCs by these instruments put important constraints on the models of acceleration of leptons by millisecond pulsars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号