共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An adaptive joint process structure is described which rejects under-ice reverberation by taking advantage of the spatial separation between acoustic backscatter returning from small elevation angles and transmitted energy reflected off the sea surface. 相似文献
3.
Monostatic reverberation measurements were collected in shallow water, over a coarse gravel and cobble bottom, 100 m deep, off the coast of Nova Scotia. Data were collected at frequencies of 21, 28, and 36 kHz using linear FM pulses of 2-kHz bandwidth and 0.160-s duration. An anchored, high-frequency active sonar array deployed at a depth of 42 m was used to collect the data. The reverberation measurements were compared with estimates computed with the NUWC generic sonar model (GSM). The data were reasonably well modeled for times greater than 0.2 s after pulse transmission by neglecting surface reverberation and using Lambert's rule for bottom backscattering with a scattering coefficient of -27 dB, independent of frequency. At all three frequencies, the data and model show a peak approximately 0.9 s after pulse transmission. This peak results from a focusing effect that the downward-refracting sound-speed profile has on the interaction of the rays with the bottom 相似文献
4.
An oceanic reverberation model 总被引:1,自引:0,他引:1
A simple model of the surface, volume, and bottom reverberation received by a moving platform as a function of time following the tranmission of a narrow-band pulsed signal is described. Both the time-varying power level and the underlying power spectrum are predicted. The model includes the effects of platform motion, transmit signal windowing, transmit and receive beam patterns, and the environment (surface, volume, and bottom backscattering strengths, the scatterer velocity distributions for surface waves and current layers, and sound absorption). An isospeed sound speed profile is assumed and reflections at the surface and bottom boundaries are not permitted. Also described is a matched filter-envelope detector receiver model for post processing of the reverberation spectra. 相似文献
5.
Shallow-water bottom reverberation measurements 总被引:2,自引:0,他引:2
Stanic S. Goodman R.R. Briggs K.B. Chotiros N.P. Kennedy E.T. 《Oceanic Engineering, IEEE Journal of》1998,23(3):203-210
High-frequency bottom reverberation measurements were made at an experimental site in the Gulf of Mexico. The acoustic data were taken as a function of frequency (40-180 kHz) and grazing angle (40-33°). The measured acoustic reverberation results are compared to predictions made by models developed by Jackson et al. (1986, 1996) and Boyle and Chotiros (1995). The models used inputs from the analysis of sediment cores and stereophotography. The model predictions show differences from each other and from the data. The results show reverberation-level variabilities as a function of frequency that cannot be accurately predicted by these models 相似文献
6.
A. Kh. Degterev 《Physical Oceanography》2007,17(5):296-302
We propose a numerical model for the evaluation of the three-dimensional scattering of sound in the sea. The model is based
on the construction of ray patterns both for the primary and secondary (scattered) radiation. The intensity of secondary radiation
is expressed via the coefficient of backward volume scattering interpreted as the fraction of backward-scattered acoustic
energy per unit length of the primary ray. It is shown that, in the first approximation, it suffices to consider the secondary
rays repeating the paths of the primary rays in the opposite direction. The attenuation of the intensity of sound along the
paths of the primary and secondary rays is taken into account. The results of numerical analysis of the reverberation signal
as a function of time are presented for various conditions (different depths of immersion of the antenna and widths of the
directional diagram and the presence of sound-scattering layers). The proposed approach can be used for the purposes of modeling
of the surface and bottom reverberation and for the solution of the inverse problems of underwater acoustics.
__________
Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 50–58, September–October, 2007. 相似文献
7.
The simulation of active sonar reverberation time series has traditionally been done using either a computationally intensive point-scatterer model or a Rayleigh-distributed reverberation-envelope model with a time-varying power level. Although adequate in scenarios where reverberation arises from a multitude of scatterers, the Rayleigh model is not representative of the target-like non-Rayleigh reverberation or clutter commonly observed with modern high-resolution sonar systems operating in shallow-water environments. In this paper, techniques for simulating non-Rayleigh reverberation are developed within the context of the finite-number-of-scatterers representation of K-distributed reverberation, which allows control of the reverberation-envelope statistics as a function of system (beamwidth and bandwidth) and environmental (scatterer density and size) parameters. To avoid the high computational effort of the point-scatterer model, reverberation is simulated at the output of the matched filter and is generated using efficient approximate methods for forming K-distributed random variables. Finite impulse response filters are used to introduce the effects of multipath propagation and the shape of the reverberation power spectrum, the latter of which requires the development of a prewarping of the K distribution parameters to control the reverberation-envelope statistics. The simulation methods presented in this paper will be useful in the testing and evaluation of active sonar signal processing algorithms, as well as for simulation-based research on the effects of the sonar system and environment on the reverberation-envelope probability density function. 相似文献
8.
Cable P.G. Yudichak T.W. Dorfman Y. Knobles D.P. Renhe Zhang Zhaohui Peng Fenghua Li Zhenglin Li 《Oceanic Engineering, IEEE Journal of》2006,31(1):145-155
Determinations of bottom scattering strength in the decade below 1 kHz under downward refracting conditions have been made using acoustic reverberation and transmission data from the 2001 East China Sea Asian Seas International Acoustic Experiment (ASIAEX). The measurements were performed using explosive sources and receiving hydrophones in ship-suspended vertical-line arrays. The focus of this paper has been the dependence of bottom scattering strength on the frequency and characterization of the uncertainties associated with the extraction of scattering strength from reverberation. The derived bottom scattering strength gradually rises with frequency from 100-300 Hz and then more rapidly above 300 Hz. A potential explanation suggests that the frequency variation results from two scattering mechanisms, rough layer scattering at the low end of the band and sediment near-surface volume scattering at the high end. The spatial extrapolation of these results is explored by comparing them with similarly derived scattering strengths using data obtained under the Navy's Harsh Environments Program at a somewhat separated site (56 km) under environmental conditions similar to those during ASIAEX. In the ASIAEX analysis, it has been found that the largest source of uncertainty in the scattering-strength frequency dependence arises from persistence of finite-amplitude effects associated with the source signal. 相似文献
9.
针对混响环境非自由声场中声源测量的问题,本文以消声水池和混响水槽为实验环境,以换能器辐射的声场为研究对象,以水听器阵列为测量前端,进行了混响环境非自由声场中声源对象的测量、分析和重构的实验研究。通过单层水听器阵列对非自由声场进行声压分布测量,并对测量结果作声波分离处理,将分离前后的声压分布和在消声水池中测量的声压分布进行比较,给出了声源频率为5 000 Hz和7 000 Hz时,声场重构的误差分析结果。结果表明,基于单层水听器阵列声压测量的声波分离方法,能够较精确地对混响环境中的声场进行重构。 相似文献
10.
A new coherent reverberation model developed at the Naval Research Laboratory, Washington, DC, and the Supreme Allied Commander Atlantic Undersea Research Centre, La Spezia, Italy, is exercised in the 17-750-Hz band to estimate the degree of non-Rayleighness of shallow-water reverberation envelopes as a function of waveguide multipath, system bandwidth, directivity, and frequency. Findings suggest that reverberation from diffuse, but non-Gaussian, scatterer distributions is significantly more Rayleigh for multipath environments than for equivalent environments excited by a single or small number of modes or for broadside receiver array processing that extracts narrow angles of reception. These findings suggest that the problem of non-Rayleigh reverberation in shallow-water waveguides can be ameliorated through the use of tuned ensonification and reception schemes, which retain high probabilities of detection while reducing the associated probability of false alarm. 相似文献
11.
Reverberation measurements made by the SACLANT Undersea Research Centre at three shallow-water sites (130-190-m depth) are compared with each other and with estimates from the DREA normal-mode reverberation model OGOPOGO. The experiments over silt-clay and sand seabeds were conducted at slightly bistatic geometries (0.7-6.0-km source-receiver separation), using explosive sources detonated at mid-water depths. The signals were received on hydrophones of either a vertical or horizontal array and analyzed in one-tenth-decade frequency bands from 25 to 1000 Hz. The data are compared with each other to investigate the site differences and frequency dependencies, and with the estimates from the reverberation model OGOPOGO to interpret the data and to obtain a qualitative measure of the scattering. For modeling purposes, geoacoustic models of the seabed were assumed, and the reverberation data were fitted by adjusting the Lambert bottom scattering coefficients. Good model agreement was obtained with both individual hydrophone and data. Though somewhat sensitive to the geoacoustic the Lambert coefficients give a measure of the frequency dependence of the scattering. For the silt-clay bottom, the scattering is weak but is independent of frequency; for the sand bottoms, the scattering is stronger and increases with frequency. These results are compared with estimates from other experiments 相似文献
12.
13.
Reverberation in low-frequency active sonar systems operating in shallow water has often been observed to follow non-Rayleigh statistical distributions. McDaniel's model, generalized to allow noninteger valued parameters, has shown promise as being capable of accurately representing real data with a minimal parameterization. This paper first derives an exact analytical expression for the cumulative distribution function (CDF) of the generalized McDaniel model and then compares it with numerical inversion of the characteristic function. Both methods are seen to provide adequate and equivalent precision; however the characteristic function inversion method is significantly faster. The latter CDF evaluation technique is then applied to the analysis of simulated and real data to show that, when minimal data are available, McDaniel's model can more accurately represent a wide variety of non-Rayleigh reverberation than the K or Rayleigh mixture models. This result arises from the generality of McDaniel's model with respect to the K-distribution (i.e., the K-distribution Pfa estimate can be dominated by model mismatch error) and to its compact parameterization with respect to the Rayleigh mixture (i.e., the Rayleigh mixture model Pfa estimate is usually dominated by parameter estimation error) 相似文献
14.
Frequency-selective attenuation of sound propagaion and reverberation in shallow waterTXFrequency-selectiveattenuationofsoundp... 相似文献
15.
M. M. Divizinyuk 《Physical Oceanography》2001,11(5):473-481
We consider the results of instrumental investigations of specific features of reverberation in the Black Sea and obtain qualitative
dependences of the duration of volume reverberation on the parameters of the Black-Sea underwater sound channel, (width, drop
of the sound velocity, and dimensions of the inhomogeneities of stratification). We also analyse the behaviour of the intensity
of surface reverberation in the far-field zone of acoustic illumination and the influence of bottom reverberation on the detection
of underwater objects.
Translated by Peter V. Malyshev and Dmitry V. Malyshev 相似文献
16.
浅海声传播和混响的选频衰减 总被引:2,自引:0,他引:2
在强负跃层浅海的爆炸声实验中,发现当声源和接收器都位于跃层之上时,平均混响强度和某一航向的声传播损失在频率1000-2000Hz之间出现强烈的异常衰减现象,而且很有意思的是发射和接收均无指向性的平均混响强度的异常衰减与该航向声传播损失的异常衰减具有中心频率相同、带宽一致、附加衰减值相近的窄带共振或选频衰减特权.显然,这一异常衰减现象无法用各向异性的机理(内波、海面或海底的有规律起伏等)来解释.根据本文实验所得的传播损失和混响强度的深度结构以及一些间接的证据,我们认为这一选频附加衰减是由分散活动干跃居上部的有鳔鱼(极可能是鱼)所引起的. 相似文献
17.
Fenghua Li Jianjun Liu Renhe Zhang 《Oceanic Engineering, IEEE Journal of》2004,29(4):1060-1066
A bottom-scattering model based on sediment small scatterers, single scattering approximation is presented, which is combined with a normal-mode-based reverberation model. The combined model (for total reverberation) is compared with measurements of shallow-water reverberation from the 2001 Asian Sea International Acoustic Experiment (ASIAEX) in the East China Sea. Reverberation intensities as a function of time and frequency are compared with theoretical predictions with reasonable agreement. The effects of the rough sea surface on the reverberation are also discussed. 相似文献
18.
The detection of a target echo in a sonar image is usually a difficult task since the reverberation, consisting of a large number of spurious echoes, generates a lot of false alarms. In this paper, we propose two new detectors derived from image processing algorithms. These detectors are respectively based on a morphological and a statistical contrast. Each detector only requires setting a few parameters. This setting is done using some prior knowledge about the data (shape of the emitted signal and the used antenna, characteristics of the reverberation). Nevertheless, an extensive statistical study of the detection performances proves that the proposed methods are robust and that even an imprecise setting of the parameters leads to satisfactory results. Applied to the real data, these detectors and their sequential combination lead to a significant improvement on the performances: The false alarm rate is drastically reduced while the detection probability is preserved. Based on different contrasts, these detectors have complementary behaviors. Therefore, a further improvement is achieved by a fusion of the different results to classify the remaining echoes as whether spurious or true detection. 相似文献
19.
Detection in the presence of reverberation is often difficult in active sonar, due to the reflection/diffusion/diffraction of the transmitted signal by the ocean surface, ground, and volume. A modelization of reverberation is often used to improve detection because classical algorithms are inefficient. A commonly used reverberation model is colored and nonstationary noise. This model leads to elaborate detection algorithms which normalize and whiten reverberation. In this paper, we focus on a more deterministic model which considers reverberation as a sum of echoes issued from the transmitted signal. The Principal Component Inverse (PCI) algorithm is used with this model to estimate and delete the reverberation echoes. A rank analysis of the observation matrix shows that PCI is efficient in this configuration under some conditions, such as when the transmitted signal is Frequency Modulated. Both methods are validated with real sonar surface reverberation noise. We show that whitening has poor performance when reverberation and target echo have the same properties, while PCI maintains the same performance whatever the reverberation characteristics. Further, we extend the algorithms to spatio-temporal data. We propose a new algorithm for PCI which allows better echo separation. This new method is shown to be more efficient on real spatio-temporal data 相似文献
20.
Statistical characterization of active sonar reverberation using extreme value theory 总被引:1,自引:0,他引:1
The statistics of reverberation in active sonar are characterized by non-Rayleigh distributed amplitudes in the normalized matched filter output. Unaccounted for, this property can lead to high false-alarm rates in fixed-threshold detectors. A new approach to modeling threshold-crossing statistics based on extreme value theory is proposed, which uses the generalized Pareto distribution as the unique asymptotic model of the tail distribution, valid at large thresholds. Methods of parameter estimation are discussed and applied to active sonar reverberation collected on a hull-mounted sonar system. The statistics of reverberation in active sonar are found to generally have a power-law behavior in the tails with a shape parameter that is persistent in time and bandwidth dependent. The threshold needed for accurate parameter estimation is generally found to be well below that of typical fixed-threshold detectors. 相似文献