首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper is concerned with identifying changes in the time series of water and sediment discharge of the Zhujiang (Pearl River), China. The gradual trend test (Mann–Kendall test), and abrupt change test (Pettitt test), have been employed on annual water discharge and sediment load series (from the 1950s–2004) at nine stations in the main channels and main tributaries of the Zhujiang. Both the Mann–Kendall and Pettitt tests indicate that water discharge at all stations in the Zhujiang Basin showed no significant trend or abrupt shift. Annual water discharges are mainly influenced by precipitation variability, while the construction of reservoirs/dams in the Zhujiang Basin had little influence on water discharge. Sediment load, however, showed significant decreasing trends at some stations in the main channel of the Xijiang and Dongjiang. More stations have seen significantly decreasing trends since the 1990s. The decreasing sediment load in the Zhujiang reflects the impacts of reservoir construction in the basin. In contrast, the Liujiang, the second largest tributary of the Xijiang, has experienced a significant upward shift of sediment load around 1991 likely caused by exacerbated rock desertification in the karst regions. The annual sediment load from the Zhujiang (excluding the delta region) to the estuary has declined from 80.4 × 106 t averaged for the period 1957–1995 to 54.0 × 106 t for the period 1996–2004. More specifically, the sediment load declined steadily since the early 1990s so that in 2004 it was about one-third of the mean level of pre-90s. Water discharge and sediment load of the Zhujiang would be more affected by human activities in the future with the further reservoir developments, especially the completion of the Datengxia hydroelectric project, and an intensification of the afforestation policy in the drainage basin.  相似文献   

2.
Seasonal and inter-annual change in land water storage (expressed in terms of water volume change) over 27 large river basins worldwide are estimated from monthly GRACE geoids solutions computed at GFZ from February 2003 to February 2006. The largest annual water volume change is found in the Amazon basin, followed by the Parana, Ob, Orinoco, Tocantins, Niger, Congo, Ganges, Mekong, and Brahmaputra. In terms of trend over the 3-year period, positive and negative values are observed but in a number of cases computed trends are at the noise level. However significant negative trends are found in the Amazon, Ganges, Mississippi, Nile, Parana, and Zambezi basins, indicating water mass loss over that period. Positive trends (water mass gain) are marginally significant. We have computed the land water contribution to sea level change. On average over the 3-year time span, we find that the net effect is positive (net loss of water in terrestrial reservoirs), on the order of 0.19 +/− 0.06 mm/yr. If sustained over a longer time span than considered here, such a value may become comparable to the ice sheets contribution to sea level rise.  相似文献   

3.
The growth of two high-elevation inland lakes (at 4600 m) was analyzed using satellite imagery (2000–2005) and data were collected over the last decade (1997–2006) at a plateau meteorological station (at 4820 m) and stream gauging data from a station (at 4250 m) in central Tibet. We examined the lake water balance responses to meteorological and hydrological variables. The results show that the lake areas greatly expanded by a maximum of 27.1% (or 43.7 km2) between 1998 and 2005. This expansion appears to be associated with an increase in annual precipitation of 51.0 mm (12.6%), mean annual and winter mean temperature increases of 0.41 °C and 0.71 °C, and an annual runoff increase of 20% during the last decade. The changes point to an abrupt increase in the annual precipitation, mean temperature and runoff occurring in 1996, 1998 and 1997, respectively, and a decrease in the annual pan evaporation that happened in 1996. The timing of lake growth corresponds closely with abrupt increases in the annual precipitation and runoff and with the decrease in the annual evaporation since the mid-1990s. This study indicates a strong positive water balance in these permafrost highland lakes, and provides further evidence of lake growth as a proxy indicator of climate variability and change.  相似文献   

4.
Air and ground temperatures measured in Eastern Siberia has been compiled and analyzed. The analysis of mean annual air temperatures measured at 52 meteorological stations within and near the East-Siberian transect during the period from 1956 through 1990 demonstrates a significant and statistically significant (at 0.05 level) positive trend ranging from 0.065 to 0.59 °C/10 yr. A statistically significant (at 0.05 level) positive trend was also observed in mean annual ground temperatures for the same period. The permafrost temperature reflects changes in air temperature on a decadal time scale much better than on an interannual time scale. Generally, positive trends in mean annual ground temperatures are slightly smaller in comparison with trends in mean annual air temperatures, except for several sites where the discordance between the air and ground temperatures can be explained by the winter snow dynamics. The average trend for the entire region was 0.26 °C/10 yr for ground temperatures at 1.6 m depth and 0.29 °C/10 yr for the air temperatures. The most significant trends in mean annual air and ground temperatures were in the southern part of the transect, between 55° and 65° N. Numerical modeling of ground temperatures has been performed for Yakutsk and Tiksi for the last 70 yr. Comparing the results of these calculations with a similar time series obtained for Fairbanks and Barrow in Alaska shows that similar variations of ground temperatures took place at the same time periods in Yakutsk and Fairbanks, and in Tiksi and Barrow. The decadal and longer time scale fluctuations in permafrost temperatures were pronounced in both regions. The magnitudes of these fluctuations were on the order of a few degrees centigrade. The fluctuations of mean annual ground temperatures were coordinated in Fairbanks and Yakutsk, and in Barrow and Tiksi. However, the magnitude and timing of these fluctuations were slightly different for each of the sites.  相似文献   

5.
The 2001 outburst of WZ Sagittae has shown the most compelling evidence yet for an enhancement of the mass-transfer rate from the donor star during a dwarf nova outburst in the form of hotspot brightening. I show that, even in this extreme case, the brightening can be attributed to tidal heating near the interaction point of an accretion stream with the expanding edge of an eccentric accretion disc, with no need at all for an increase in the mass-transfer rate. Furthermore, I confirm previous suggestions that an increase in mass-transfer rate through the stream damps any eccentricity in an accretion disc and suppresses the appearance of superhumps, in contradiction to observations. Tidal heating is expected to be most significant in systems with small mass ratios. It follows that systems like WZ Sagittae – which has a tiny mass ratio – are those most likely to show a brightening in the hotspot region.  相似文献   

6.
A long series of lakes (~ 150) borders the Patagonian Andes (south of ~ 38°S), most of which are a geomorphologic relict of Pleistocene glaciations. Employing instrumental records, we inspected lake water level departures from seasonal variations in seven proglacial lakes: Lacar, Mascardi, Steffen, Escondido, Puelo, Vinter, and Argentino. Lakes north of ~ 42°S show maximum gage (water) level during austral winter months; lakes between ~ 42° and ~ 45°S appear transitional; the one lake south of ~ 50°S (Argentino) shows maximum water level in early autumn. Most lakes show moderate level fluctuation throughout yearly records and, in general, show heteroscedacity. Furthermore, Hurst exponents reveal persistent behavior (i.e., long-term memory effect) in all water level series. In most lakes there are no trends in deseasonalized mean and maximum water levels (Seasonal Kendall test). Lake Mascardi–Manso River system (mostly fed by melt water from the retreating Manso Glacier) is a contrasting example that shows a decreasing trend during summer months that we ascribe to the also declining ice volume. Harmonic analysis (Fourier and wavelet transform) of deseasonalized mean and maximum water level time series shows interannual and decadal periodicities that we link to the occurrence of El Niño and/or the Antarctic Oscillation. The associated phase spectrum indicates that there is a ~ 13-month lag between ENSO occurrences and its effect on anomalous lake water levels. Increased snow accumulation during austral winters usually follows summertime El Niño events, which normally result in increased melt water volume that occurs with about one-year delay during the following (austral) spring/summer.  相似文献   

7.
In the present work the data of three different neutron monitoring stations, Deep River, Tokyo and Inuvik located at different geomagnetic cutoff rigidities and altitudes has been harmonically analysed for the period 1980–1993, 1980–1990 and 1981–1993 respectively to investigate for a comparative study of diurnal, semi-diurnal and tri-diurnal anisotropies in cosmic ray (CR) intensity in connection with the change in IMF Bz component and solar wind velocity on 60 quietest days. It is observed that the amplitude of first harmonic is highly anti-correlated to the solar wind velocity during the period of high-speed solar wind stream (HSSWS) epoch on quiet days for three neutron monitor stations at different geomagnetic rigidity thresholds. During quiet days the amplitude of all the three harmonics significantly deviates on the onset of HSSWS epoch, whereas the direction of the anisotropy of all the three harmonics remains time invariant at three different cut off rigidity stations. The amplitude as well as the direction of anisotropy of all the three harmonics does not have time variation characteristics associated with Bz component of IMF on geo-magnetically most quiet days.  相似文献   

8.
Mendenhall Glacier is a dynamic maritime glacier in southeast Alaska that is undergoing substantial recession and thinning. The terminus has retreated 3 km during the 20th century and the lower part of the glacier has thinned 200 m or more since 1909. Glacier-wide volume loss between 1948 and 2000 is estimated at 5.5 km3. Wastage has been the strongest in the glacier's lower reaches, but the glacier has also thinned at higher elevations. The shrinkage of Mendenhall Glacier appears to be due primarily to surface melting and secondarily to lake calving. The change in the average rate of thinning on the lower glacier, <1 m a−1 between 1948 and 1982 and >2 m a−1 since 1982, agrees qualitatively with observed warming trends in the region. Mean annual temperatures in Juneau decreased slightly from 1947 to 1976; they then began to increase, leading to an overall warming of ∼1.6 °C since 1943. Lake calving losses have periodically been a small but significant fraction of glacier ablation. The portion of the terminus that ends in the lake is becoming increasingly vulnerable to calving because of a deep pro-glacial lake basin. If current climatic trends persist, the glacier will continue to shrink and the terminus will recede onto land at a position about 500 m inland within one to two decades. The glacier and the meltwaters that flow from it are integral components of the Mendenhall Valley hydrologic system. Approximately 13% of the recent average annual discharge of the Mendenhall River is attributable to glacier shrinkage. Glacier melt contributes 50% of the total river discharge in summer.  相似文献   

9.
Two sensitivity experiments, in which CO2 is instantaneously doubled, have been performed with a general circulation model to determine the influence of the convective parametrization on simulated climate change. We have examined the spatial structure of changes in the annual mean and annual cycle for surface temperature and precipitation for both experiments; similarly we have examined changes in the variance for these two fields. We have also computed a range of test statistics in order to obtain reliable measures of the signal-to-noise ratio in the climate change signal from each experiment. We have computed test statistics for the entire globe and for five different region and we contrast the global response with the response in the Australian region taken as a representative sample.We find that the highest signal-to-noise ratios in the change from 1 * CO2 to 2 * CO2 are for the change in surface temperature for both experiments with little difference in the global averages between the experiments. Globally averaged precipitation shows a greater noise level but perhaps the greatest contrast between experiments. There are generally significant increases in the temporal and spatial variability of precipitation in the change from the 1 * CO2 to 2 * CO2 and with some differences apparent between the two experiments. The temporal variability of surface temperature does not change significantly in any of the 2 * CO2 cases, and there is little difference between the experiments. There is a significant decrease in the spatial variability of surface temperature in all 2 * CO2 experiments in all cases and with significant differences in the seasonal variations between different experiments. The spatial variability of precipitation increases in all 2 * CO2 cases and also with substantial differences in the seasonal variations between the experiments. There are accompanying significantly different spatial pattern correlations for both surface temperature and precipitation. In general we find that the global changes are fairly robust with the differences associated with convective parametrization schemes being very small. However, at the regional level, there are marked differences between experiments with changes both in the means and in the spatial and temporal variances but often with low levels of significance.  相似文献   

10.
In this study, more than 13 yr of merged altimetry sea level anomalies (SLA) data were used to analyze the trends of sea level variations in the South China Sea (SCS). The result shows that the mean sea level over the SCS has a rise rate of 11.3 mm/yr during 1993–2000 and a fall rate of 11.8 mm/yr during 2001–2005. The geographical distribution of the sea level variations over the SCS is asymmetric with a pronounced variation existing in the deep water. The trends of thermosteric sea level variations were also examined using Ishii data and MITgcm assimilation data. The result indicates that the thermal change of the upper layer of the SCS has a significant contribution to the sea level variations. Heat budget analysis suggests that heat advection may be a key factor influencing the thermal change. Apart from thermal contribution, the effect of water exchange on the sea level variations was also studied.  相似文献   

11.
Climatic changes of the 20th century have altered the water cycle in the Andean basins of central Argentina. The most visible change is seen in the mountain glaciers, with loss of part of their mass due to decreasing thickness and a substantial recession in the last 100 years. This paper briefly describes the results of glacier mass balance research since 1979 in the Piloto Glacier at the Cajón del Rubio, in the headwaters of Las Cuevas River, presenting new results for the period 1997–2003. Very large interannual variability of net annual specific balance is evident, due largely to variations in winter snow accumulation, with a maximum net annual value of + 151 cm w.e. and a minimum value of - 230 cm w.e. Wet El Niño years are normally associated with positive net annual balances, while dry La Niña years generally result in negative balances. Within the 24-year period, 67% of the years show negative net annual specific balances, with a cumulative mass balance loss of - 10.50 m water equivalent (w.e.). Except for exceptions normally related to El Niño events, a general decreasing trend of winter snow accumulation is evident in the record, particularly after 1992, which has a strong effect in the overall negative mass balance values. The glacier contribution to Las Cuevas River runoff is analysed based on the Punta de Vacas River gauge station for a hypothetical year without snow precipitation (YWSP), when the snowmelt component is zero. Extremely dry years similar to a YWSP have occurred in 1968–1969, 1969–1970 and 1996–1997. The Punta de Vacas gauge station is located 62 km downstream from Piloto Glacier, and the basin contains 3.0% of uncovered glacier ice and 3.7% of debris-covered ice. The total glacier contribution to Las Cuevas River discharge is calculated as 82 ± 8% during extremely dry years. If glacier wastage continues at the present trend as observed during the last 2 decades, it will severely affect the water resources in the arid central Andes of Argentina.  相似文献   

12.
In the present work the cosmic ray data of three different neutron monitoring stations, Deep River, Inuvik, and Tokyo, located at different geomagnetic cutoff rigidities and altitudes have been harmonically analyzed for the period 1980–95 for a comparative study of diurnal semi-diurnal and tri-diurnal anisotropies in cosmic ray intensity in connection with the change in interplanetary magnetic field Bz component and solar wind velocity on 60 quietest days. It is observed that the amplitudes of all the three harmonics increase during the period 1982–84 at all the stations during the high speed solar wind stream epoch and remain low during the declining phase of the stream. The amplitudes of the three harmonics have no obvious characteristics associated with the time variation of magnitude of the Bz component. The phases of all the three harmonics have no time variation characteristics associated with solar wind velocity and Bz. Published in Astrofizika, Vol. 49, No. 4, pp. 651–664 (August 2006).  相似文献   

13.
This paper examines the relations between the solar-wind and Comet Bennett during the period March 23 to April 5, 1970. A large kink was observed in the ion tail of the comet on April 4, but no solar-wind stream was observed in the ecliptic plane which could have caused the kink. Thus, either there was no correlation between the solar wind at the Earth and that at Comet Bennett (which was 40° above the ecliptic) or the kink was caused by something other than a high-speed stream. The fine structure visible in photographs of the kink favors the second of these alternatives. It is shown that a shock probably passed through Comet Bennett on March 31, but no effect was seen in photographs of the comet. A stream preceded by another shock and a large abrupt change in momentum flux might have intercepted the comet between March 24 and March 28, but again no effect was seen in photographs of the Comet. In view of these results, one must seriously consider the possibility that a large, abrupt change in momentum flux of the solar-wind (such as that at a shock wave or ahead of a stream) is neither necessary nor sufficient to cause a large kink in a comet tail.On leave from Institute für Astrophysik Technische Universität Berlin West Germany.  相似文献   

14.
Recent studies have pointed out that persistence of the atmospheric circulation over Europe, as measured by residence times of circulation types, has increased since the mid-1980s in all seasons and for most groups of the types. The greater persistence may affect surface climatic anomalies, particularly the frequency and severity of heat and cold waves associated with severe impacts on society and environment. In this paper, relationships between the persistence of circulation types over Europe and extreme surface air temperature anomalies are studied over the 20th century using the Hess–Brezowsky catalogue of large-scale circulation patterns and long-term temperature series at stations covering most of the European continent. Types significantly conducive to heat and cold waves are identified, and temperature anomalies are linked to their persistence. It is shown that more persistent circulation enhances the severity of temperature extremes over the whole area, which is slightly more important for warm than cold temperature anomalies. The changes in both frequencies and residence times of circulation patterns have been supporting sharply rising trends in warm temperature extremes observed over Europe in recent decades, and the circulation changes may also contributed to the fact that trends in cold temperature extremes have been less pronounced or absent in the same period. The findings also emphasize the need for taking into account the persistence of circulation types together with their frequencies when evaluating links between the atmospheric circulation and the surface climate. In global warming context, the effects of the future climate change on the occurrence and severity of temperature extremes may be exacerbated by a more persistent circulation related to a decreased cyclone activity over mid-latitudes and a northward shift of storm tracks.  相似文献   

15.
Observations from 560 weather stations in China show that sand–dust storms occur most frequently in April in north China. The region consists of Sub-dry Mid Temperate, Dry Mid Temperate, Sub-dry South Temperate and Dry South Temperate Zones and much of the land surface is desert or semi-desert: it is relatively dry with minimal rainfall and a high annual mean temperature. In most regions of China, the annual mean frequency of sand–dust events decreased sharply between 1980 and 1997 and then increased from 1997 to 2000. Statistical analyses demonstrate that the frequency of sand–dust storms correlates highly with wind speed, which in turn is strongly related to land surface features; on the other hand, a significant correlation between storm events and other atmospheric quantities such as precipitation and temperature was not observed. Accordingly, land surface cover characteristics (vegetation, snowfall and soil texture) may play a significant role in determining the occurrence of sand–dust storms in China. Analysis of Normalized Difference Vegetation Index derived from National Oceanic and Atmospheric Administration and Empirical Orthogonal Function show that since 1995 surface vegetation cover in large areas of Northern China has significantly deteriorated. Moreover, a high correlation is shown to exist among the annual occurrence of sand–dust storms, surface vegetation cover and snowfall. This suggests that the deterioration of surface vegetation cover may strongly influence the occurrence of sand–dust storms in China. Soils with coarse and medium textures are found to be more associated with sand–dust storms than other soils.  相似文献   

16.
This study simulates water resources in the Tien Shan alpine basins to forecast how global and regional climate changes would affect river runoff. The model employed annual mean values for the major characteristics of the water cycle: annual air temperature, precipitation, evapotranspiration and river runoff. The simulation was based on 304 hydro-meteorological stations, 23 precipitation sites, 328 high altitudinal points with glaciological measurements, 123 stream-gauges, and 54 evaporation sites, and it took into account topography. The findings were simulated over Tien Shan relief using a 1:500,000 scale 100 m grid resolution Digital Elevation Model. An applicable GIS-based distributed River Runoff Model was implemented in regional conditions and tested in the Tien Shan basins. The annual evapotranspiration exceeds the river runoff in the Tien Shan watersheds particularly up to 3700 m. Hypothetical climate-change scenarios in the Tien Shan predict that by 2100 river runoff will increase by 1.047 times with an increase in air temperature averaging 3 °C and an increase in precipitation averaging 1.2 times the current levels. Change in precipitation, rather than temperature, is the main parameter determining river runoff in the Tien Shan. The maximum ratio for predicted river runoff could reach up to 2.2 and the minimum is predicted to be 0.55 times current levels. This possibly dramatic change in river runoff indicates on non-linear system response caused mainly by the non-linear response of evapotranspiration from air temperature and precipitation changes. In the frame of forecasted possible climate change scenarios the probability of river runoff growth amounts 83–87% and probability of this decline is 17–13% by 2100 in the Tien Shan River basins.  相似文献   

17.
G. J. D. Petrie 《Solar physics》2013,287(1-2):415-440
The active region NOAA 11158 produced the first X-class flare of Solar Cycle 24, an X2.2 flare at 01:44 UT on 15 February 2011. The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) satellite produces 12-minute, 0.5′′ pixel?1 vector magnetograms. Here we analyze a series of these data covering a 12-hour interval centered at the time of this flare. We describe the spatial distributions of the photospheric magnetic changes associated with the flare, including the abrupt changes in the field vector, vertical electric current and Lorentz-force vector acting on the solar interior. We also describe these parameters’ temporal evolution. The abrupt magnetic changes were concentrated near the neutral line and in two neighboring sunspots. Near the neutral line, the field vectors became stronger and more horizontal during the flare and the shear increased. This was due to an increase in strength of the horizontal field components near the neutral line, most significant in the horizontal component parallel to the neutral line but the perpendicular component also increased in strength. The vertical component did not show a significant, permanent overall change at the neutral line. The increase in field strength at the neutral line was accompanied by a compensating decrease in field strength in the surrounding volume. In the two sunspots near the neutral line the integrated azimuthal field abruptly decreased during the flare but this change was permanent in only one of the spots. There was a large, abrupt, downward vertical Lorentz-force change acting on the solar interior during the flare, consistent with results of past analyses and recent theoretical work. The horizontal Lorentz force acted in opposite directions along each side of neutral line, with the two sunspots at each end subject to abrupt torsional forces relaxing their magnetic twist. These shearing forces were consistent with a contraction of field and decrease of shear near the neutral line, whereas the field itself became more sheared as a result of the field collapsing towards the neutral line from the surrounding volume. The Lorentz forces acting on the atmospheric volume above the photosphere were equal and opposite.  相似文献   

18.
A stream interaction region (SIR) forms when a fast solar stream overtakes a slow stream, leading to structure that evolves as an SIR moves away from the Sun. Based on Wind (1995 – 2004) and ACE (1998 – 2004) in situ observations, we have conducted a comprehensive survey of SIRs at one AU, including a separate assessment of the longer-lasting corotating interaction regions (CIRs) that recur on more than one solar rotation. In all there are 196 CIRs, accounting for about 54% of the 365 SIRs. The largest proportion of CIRs to SIRs (64%) appears in 1999, and the smallest proportion (49%) is in 2002. Over the ten years, the annual number of SIR events varies little, from 32 up to 45. On average, the occurrence rate of shocks at SIRs at one AU is about 24%. Seventy percent of the SIRs with shocks have only forward shocks, more than twice the percentage of SIRs with only reverse shocks. This preponderance of forward shocks is consistent with the deflections of forward and reverse shocks relative to the ecliptic plane. In order to help address the effect of SIRs and CIRs on geomagnetic activity, we determine the solar-cycle variation of the event duration, scale size, the change in velocity from slow stream to fast stream, and the solar-cycle variation of the maximum magnetic field, peak total perpendicular pressure, and other properties. These statistics also provide a baseline for future studies at other heliocentric distances and for validating heliospheric models. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
This study aimed to disclose impacts of environment changes on hydrologic regimes in the Hei River Watershed, Shaanxi Province in China. We investigated the effects of the man-made landscape (Jingpen Reservoir) on the rainstorm–flood processes using a proposed Kinematic Wave model, simulated impacts of land use and cover changes on surface runoff generation and river flow characteristics at monthly, seasonal, and annual scales through designed scenarios of different combinations of land use and cover and climate conditions on basis of the SWAT model, evaluated the climate change and human activities effects on water balance from 1954 to 2001. Through these investigations, the following results were achieved. Firstly, it showed that the man-made landscape (the Jingpen Reservoir) had altered the rainstorm–flood process, the flood wave damped right after it flowed out the Jingpen Reservoir. Secondly, changes of land use and cover led to river flow redistribution, soil moisture and recharge fluctuations. Evapotranspiration increased 12.9%, river flow discharge decreased 17.7%, runoff generation process accelerated 1.31 times in 2000 than in 1986, and water resources of the total watershed decreased 7.7% in 2000 compared to the land use and cover scenario in 1986. Finally, the interaction between climate change and human activities led to the total water resource decreased by 10.6% in 2000 compared to that in 1986 in the Hei River Watershed.  相似文献   

20.
Most areas of arid and semiarid China are covered by aeolian sand dunes, sand sheets, and desert steppes, and the existence of the nearly 80 million people who live in this region could be seriously jeopardized if climate change increases desertification. However, the expected trends in desertification during the 21st century are poorly understood. In the present study, we selected the ECHAM4 and HadCM3 global climate models (after comparing them with the results of the GFDL-R30, CGCM2, and CSIRO-Mk2b models) and used simulations of a dune mobility index under IPCC SRES climate scenarios A1FI, A2a, A2b, A2c, B1a, B2a, and B2b to estimate future trends in dune activity and desertification in China. Although uncertainties in climate predictions mean that there is still far to go before we can develop a comprehensive dune activity estimation system, HadCM3 simulations with most greenhouse forcing scenarios showed decreased desertification in most western region of arid and semiarid China by 2039, but increased desertification thereafter, whereas ECHAM4 simulation results showed that desertification will increase during this period. Inhabitants of thecentral region will benefit from reversed desertification from 2010 to 2099, whereas inhabitants of the eastern region will suffer from increased desertification from 2010 to 2099. From 2010 to 2039, most regions will not be significantly affected by desertification, but from 2040 to 2099, the environments of the western and eastern regions will deteriorate due to the significant effects of global warming (particularly the interaction between precipitation and potential evapotranspiration), leading to decreased livestock and grain yields and possibly threatening China's food security.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号