首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
表镶金刚石钻头对金刚石品级的和粒度要求较高;同时要求严格按照岩石特性,合理选用钻头及其规程,尤其要重视岩石硬度、研磨性以及均质完整程度和含石英百分比等。  相似文献   

2.
李大佛 《探矿工程》1984,(4):6-10,18
常规钻头在坚硬、致密、弱研磨性地层(即所谓“打滑”地层)使用,时效极低,有时根本不能进尺。如何对付“打滑”地层的钻进,研制适应该地层特点的金刚石钻头,是当前钻探生产中急待解决的课题。从1980年开始,我们对“打滑”地层用电镀人造金刚石孕镶钻头进行了研制与试验,取得了一定效果,现将有关情况论述如下。一、“打滑”地层与钻头打滑习惯上称为“打滑”地层的岩石,主要特点是岩石坚硬、结构致密、研磨性弱。常常表现为压入硬度大、石英含量多、矿物粒径小,因而研磨能力差。  相似文献   

3.
为了解决青海东昆仑重点成矿带金刚石钻进中钻头使用寿命较短的问题,对该区域典型岩石的研磨性、可钻性进行了测试分析,并对影响钻头寿命的因素进行了现场调研。测试结果表明:岩石的研磨性主要在5~6级,可钻性为7~8级。回归统计分析表明,影响钻头寿命的显著因素是钻孔深度和钻头回转速度:钻孔越深,转速越高,钻头寿命越短;认为这是由于地层漏失,导致环空粗颗粒岩屑不断累积,造成钻头重复破碎岩屑、拉槽和微烧,从而降低了钻头的寿命。  相似文献   

4.
铁南勘探区部分岩石可钻性为8级,研磨性中等,煤层以粉煤为主,胶结性差。针对该区煤心采取率低的情况,对绳索取心金刚石钻头进了了改进:一改钻头形状为三环尖齿底唇形状;二是根据不同地层及岩性选用不同胎体硬度金刚石钻头、不同的金刚石粒度与浓度;三是在底喷钻头水口处加设隔水墙,并改变倒角方向。  相似文献   

5.
孕镶金刚石钻头结构参数主要包括胎体性能,金刚石品级、粒度、形状、浓度,钻头水路等方面,这些参数对于钻头钻进岩石的适应性均起着一定的作用.对于不同的地质条件,这些参数应有所选择.本文就孕镶钻头金刚石浓度、粒度的优化设计提出一些看法. 金刚石浓度的设计孕镶金刚石钻头在孔底工作时,在轴向压力作用下,钻头与岩石表面相接触,岩石研磨钻头胎体,金刚石逐渐出露.由于金刚石硬度远远超过岩石的硬度,出露的金刚石在轴向压力下,使  相似文献   

6.
我队在推广应用金刚石钻进时,遇到几十米颗粒细而致密,研磨性很弱的坚硬岩石—硅质岩,采用孕镶金刚石钻头钻进时,钻头打滑,钻进效率很低,甚至不进尺。主要原因是岩石硬度高,结构致密,研磨性弱,胎体性能与岩石性质不相适应。在钻进过程  相似文献   

7.
在地质钻探以及石油钻井中,为了研究各个钻进规程参数,岩石的机械物理性质以及钻头的性能三者之间的关系,必须获得和记录大量的试验数据,这些数据包括三个方面 1.钻头方面钻头编号,钻头直径,壁厚,钻头形状,金刚石浓度,金刚石粒度,钻头胎体硬度,钻头唇面面积等。 2.岩石方面岩石的硬度,动弹模量,泊松比,纵波速度,横波速度,研磨性指标,塑性系数,剪切模量,石英含量等。  相似文献   

8.
岩石的研磨性是钻井过程中钻头的磨损预测及优化的重要因素。为了预测钻遇地层岩石的研磨性,建立了钻井过程中PDC复合片的磨损计算模型,从而得到了岩石研磨性的预测方法。首先,通过复合片与地层之间的受力分析并结合岩石的破碎条件,建立了不同钻压条件下地层对复合片的作用力计算模型。根据石英含量的概率密度分布情况,获得了岩石中参与磨损的颗粒与复合片底部的真实作用力。然后,根据PDC复合片磨损的几何原理,建立了地层对钻头复合片的磨损计算模型。通过室内实验对模型进行修正,分析了岩石各种属性对复合片磨损的影响规律,揭示了各参数影响复合片磨损的主次顺序依次为:弹性模量>石英含量>内摩擦角>表面粗糙度>泊松比>内聚力。基于该磨损模型建立了岩石研磨性评价指标,对制定了岩石研磨性的分级标准具有一定的借鉴意义。  相似文献   

9.
《探矿工程》1979,(6):25-28
一、迴转钻进时岩石硬度概念迴转钻进时确定岩石可钻性的最主要因素一般认为是岩石的硬度和研磨性。其理论与实践依据是:第一、现用迴转钻进碎岩工具以硬质合金、金刚石作为钻头齿刃,钻进过程依赖压入—剪切、压裂—压碎的作用;细粒孕镶金刚石钻头以磨削破碎岩石。如果把磨粒放大,也和前者的破碎岩石作用相仿。十分明显,一般较坚硬的岩石总是比较软的岩石难以钻进,也就是钻进速度较低。  相似文献   

10.
结合承德M24矿区深孔钻探工程,对钻进参数的选择情况进行了分析。分析认为,深孔钻进中,钻进压力的选择要综合考虑钻进的口径大小,岩石的硬度、强度、研磨性、完整性;在一定范围内,金刚石钻头的钻速和转速成正比例关系;冲冼液的选择应根据钻头类型与规格,胎体性能,钻孔深度,岩石研磨性、完整程度等来选择;适当扩大金刚石钻头的外径尺寸,能有效地避免高泵压的危害;可通过观察钻机主电机的电流指示表数值变化,判断孔内钻杆工况,电流的变化反映出钻机回转扭矩的变化。  相似文献   

11.
所谓打滑地层,一般系造岩矿物的硬度高,岩石的颗粒细,颗粒与颗粒之间的空隙度小,结胶物与岩石颗粒的硬度差小,研磨性弱的岩矿层。当钻头在这种地层钻进一段时间后,钻头底出刃的金刚石逐渐磨纯,克取岩石能力随之削弱。由于这种岩层硬度高,颗粒细,尽管钻头在孔底作回转运动,但金刚石和岩石的接触表面形成了一层光滑的“保护层”,使金刚石继续出露困难,减少了岩石与金刚石之间的摩擦系数,而导致钻头在孔底打滑。根据打滑地层的特点和钻头在孔底打滑原因,我们在钻进中主要是从以下几个方面来提高钻进效率的。  相似文献   

12.
利用微钻法测定岩石可钻性等级与实际生产中所反映的岩石可钻性对比性强,是作为部颁标准中测定岩石可钻性等级的主要方法之一。K-20微钻是为野外生产队、省级研究室和钻头制造厂设计的。该实验台采用液压给进,结构轻便、易于操作、造价低,经过野外队、省局研究室和金刚石钻头制造厂的二年多来的使用,认为是解决钻探生产定额有争议的有效设备,如果与万分之一天平配用还可进行岩石相对研磨性指标的测定。也可作为正确选用钻头及钻头对岩层适用性研究的轻型设备。  相似文献   

13.
岩石可钻性可通过分析它的矿物成分、抗压强度、晶粒尺寸和结构来获得。在不同钻进设备条件下,不同的岩石材料特征有不同的结果。硬岩破碎通常需要大的冲击能量以及扭矩;研磨性岩石导致钻头钢体、接头和活塞套磨耗较大和使用寿命减少。  相似文献   

14.
一种特殊设计的装置(包括一个装在小杆上的孕镶金刚石钻头),可在衡压下对岩石进行刻槽,用以确定岩石的可钻性并进行分级。由于刻槽深度,即岩心直径尺寸的变化量是岩石硬度的函数;金刚石的磨损量是岩石研磨性的函数,故该法可用作金刚石钻进的岩石分级。  相似文献   

15.
在坑内钻进硬岩层时,人造金刚石钻头常打滑,此时金刚石不出刃,钻头和岩石互不磨损,钻头唇面光滑,金刚石有镜面反光现象.钻头打滑的原因是岩石致密坚硬,研磨性小,胎体不能在钻进过程中自磨而使金刚石出刃,因而钻头不能刻划岩石,岩石也不磨损钻头.  相似文献   

16.
人造金刚石钻进中岩石研磨性的试验研究   总被引:1,自引:0,他引:1  
本文据金刚石钻进过程的特点,提出了用模拟方法确定岩石的研磨性。利用专门的装置与材料。笔者研究了人造金刚石和钻头胎体的磨损机理、岩石和金刚石之间的动摩擦系数及其变化范围;在统一的操作规程下测定了19种岩石的研磨性。除分析了岩石的物理机械性质、研磨性和破岩参数之间的关系外,还提出了岩石按研磨性分级表;并初步探讨了胎体耐磨性与岩石研磨性之间的适应性及其判别式。  相似文献   

17.
钻头胎体硬度是一项重要技术指标,应与所钻岩石的硬度(可钻性)和研磨性相适应。胎体硬度直接影响钻探技术经济指标的提高和钻进工艺参数的选择。试验研究表明,钻头胎体硬度分布很不均匀,差别很大。首先应从胎体烧结工艺上找原因,烧结压力偏小(5 MPa)可能是首要原因。钻头、工艺参数、操作技术等都很重要,缺一不可。钻进技术经济指标低,不一定都是钻头质量问题,要从多方面进行研究。提倡把经验打钻提高到科学打钻上来。  相似文献   

18.
为提高钻进效率,合理利用钻进过程中产生的热量,本文采用摩擦热能辅助机械能碎岩(简称:热-机碎岩)的方法,将氮化硅作为摩擦元件引入孕镶金刚石钻头中,以提高钻头工作层的钻进性能。本文通过对钻头水口、摩擦元件的尺寸计算,钻头胎体、结构的设计,制造了一种新型热-机碎岩孕镶金刚石钻头(简称:热-机碎岩钻头),并与常规六水口钻头和三水口钻头开展了室内钻进试验对比。结果表明,与六水口钻头和三水口钻头相比,热-机碎岩钻头加入摩擦元件后能够因摩擦生热而使岩石产生弱化作用,钻头钻速提高,在相同钻井液流量下最高可比六水口钻头的机械钻速高33.3%。热-机碎岩钻头胎体的磨损程度比三水口钻头小,热-机碎岩钻头可用于强研磨性地层的钻进。  相似文献   

19.
《探矿工程》1977,(2):45-46,44
金刚石钻进由于采用金刚石作磨料,尤其是孕镶式钻头,采用细粒磨料级金刚石(其粒度为30目至100目,相当于0.63~0.125毫米),在钻进时类似砂轮磨削原理破碎岩石。因此,金刚石钻进时很重要的一个钻进技术参数,就是钻头的圆周线速度,也就是钻头上金刚石在钻进时的单位时间内在岩石面上克取岩石所经过的距离。计算圆周线速度的公式:  相似文献   

20.
关于适当根据钻进条件选用金刚石钻头之建议:胎体金属硬度标准硬度的:用于无研磨性岩石,如页岩、白云岩硬的:用于中等研磨性岩石,如细粒花岗岩、石英岩  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号