首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由陕西省地质局原第十四地质队勘探的陕北吴堡煤矿已于1982年提交报告,确认该煤矿属一大型焦煤矿床。该矿煤层赋存于石炭—二叠系山西组和太原组中。煤层层数多,倾角平缓。主煤层分布稳定,厚度大,煤质好,储量丰富。其中山西组含煤4—5层,主可采煤一层,厚0.4—5.1米,大部分在1.6—3米之间,为优质肥煤和焦煤。太原组含煤3—5层,主可采煤一层,厚3.8—10米,一般稳定在8米左右,为焦煤和瘦煤,深部出现贫煤。  相似文献   

2.
依据钻探资料对黄陇侏罗纪煤田焦坪矿区转角勘查区含煤地层分布特征及可采煤层的分布与厚度进行了分析,认为转角勘查区含煤地层为中侏罗统延安组,主采煤层4-2号煤位于第一段。含煤地层及主采煤层的展布特征主要受三叠系顶板构造形态的控制,凹陷区延安组沉积厚度大,煤层较厚,隆起区煤层较薄或缺失。  相似文献   

3.
廖友常 《贵州地质》2007,24(3):202-206
大竹坝井田位于呈北东向展布的松坎复式向斜南东翼之次级褶皱-乐坪背斜南东翼,含煤地层为上二叠统龙潭组(P3l),厚45.61~71.53m,平均厚61.10m,含煤层(线)2~6层,全区可采煤层一层(C3),局部可采煤层二层(C2、C4)。C3煤层具有低挥发份、中灰、中高硫、高固定碳、高熔灰分、高热值的特点。可作工业用煤、动力用煤、气化用煤和化工用煤以及民用等。井田以含煤地层相对较薄,可采煤层少,煤层厚度小,含煤率低为其特征。  相似文献   

4.
运用压力控溶效应探讨曹村矿陷落柱的分布规律   总被引:1,自引:0,他引:1  
曹村矿属晋南霍县矿区,处于汾渭地堑中的临汾盆地中段。该段地堑的边缘断裂总体走向北北东。井田含煤地层为石炭二叠系。煤系基底为奥陶纪马家沟组灰岩。煤系共含煤15层,可采和局部可采煤层12层。山西组的2#煤层平均厚8米左右,较稳定,是矿井主采煤层。5#、6#、9#、10#、11#为太原组稳定可采煤层。井田含煤地层遭受不同程度的剥蚀,并为第三系红土、泥灰岩和第四系黄土掩盖。覆盖层厚度一般大于100米。煤层起伏大,北东30一60°正断层甚为发育。褶皱以北北东及近东西两个方向展布,北北东向褶曲规模较大。   相似文献   

5.
淮北矿区芦岭煤矿主采煤层8煤为特厚煤层,厚度2.72-17.75m,平均厚度9.60m,煤层硬度系数厂为0.16-0.53,构造煤累计厚度约占全层厚度的65%-90%。剖面自上而下划分为碎裂煤、菱形包裹体煤、片状煤、鳞片煤和粉末状煤5种类型,构造类型煤相间分布。微观上网络状裂隙发育.密集的网络状裂隙交叉切割.显微组分破坏严重.煤层受构造作用影响越大,构造煤中的微孔所占比例也就越高。在平面上构造煤的发育可划分为东、中、西三部分,井田东部构造煤较发育,厚度占全层厚度的75%-80%;中部构造煤最发育,厚度占全层厚度的95%以上;井田西部构造煤所占比例相对较低,约占全层厚度的65%-70%。采区资料表明,在倾向上,随着煤层深度的增加,构造煤厚度占金层厚度比例呈上升趋势.-450--460m水平以下,构造煤层所占比例明显增高,约占95%以上。  相似文献   

6.
桑威—基畏那煤田成煤时代属早二迭世。煤田基底为前寒武系变质岩系,其上为上石炭统依多西组,下二迭统姆丘丘玛组,上二迭统鲁呼呼组,以及白垩系、第三系、第四系地层。其中含煤地层为下二迭统下姆丘丘玛组,上煤段含煤二层(1、2号煤),多不可采;下煤段含煤七层(3、4、5、6、7、8、9号煤),其中3b、5、6号煤层全区发育,为主要可采煤层。煤层厚2-3米,夹矸多,多属复杂结构煤层,按中国煤的分类,属气煤和弱粘煤,煤的灰分高,硫分中等。主要煤层的厚度、结构及煤质特征见表1。   相似文献   

7.
东光煤矿含煤地层为龙潭组,含煤层数多,煤层厚度变化大。根据矿区地质资料及测井成果,采用标志层法、古生物法,测井曲线特征对比法、煤质分析等方法对煤层进行综合对比。准确判定了该区可采煤层6煤、14煤、16煤、21煤、23煤、27煤及其相应标志层B3、B4、B6、辅1、辅2、B7、B9,的位置关系,并在此基础上对各煤层厚度的变化趋势进行了定性解释。  相似文献   

8.
朔南麻家梁井田主要含煤地层为石炭系太原组和二叠系山西组,共含煤11层,其中可采煤层8层,4、9号煤层为主要可采煤层。4号煤层位于山西组下部,厚度1.35~11.09m,结构复杂,总体呈南部厚度大,中部及北部厚度变小,其厚度变化与下部K4砂岩呈负相关关系并受上部K5砂岩的冲刷影响,在29线以北存在一个北东向的薄煤带,煤厚小于4m;9号煤层位于太原组下部,厚度1.15~18.16m,在北部及东南部(35线附近)厚度皆大于10m,在西南部63线以西及37线以南地区煤层分叉,分叉区面积仅占9号煤层总面积的1/5。9号煤层含2~11层夹矸,以含3~5层夹矸的居多,且多集中分布在煤层下部,反映出9煤层聚煤环境由动荡逐渐趋于稳定的沉积环境。井田内各主要可采煤层层位稳定或比较稳定,虽然厚度有变化但规律性较强,掌握这一规律,对工程施工、煤层对比有一定的指导意义。  相似文献   

9.
石灰煤矿位于云南省大关县,矿区地质构造为一简单的宽缓向斜;矿区煤系地层为石炭系下统旧司段(C1dj),该地层中产2层煤,从上至下编为M1煤层和M2煤层,M2煤层为可采煤,厚0.71m~1.75m。煤层结构单一,厚度及层位相对稳定,煤质牌号属无烟煤类WY3。  相似文献   

10.
高艳 《安徽地质》2008,18(2):114-117
孙疃煤矿正处于开发阶段,7z、8z和10煤层为孙疃煤矿的主采煤层,分析沉积环境对煤层的控制作用,研究主采煤层厚度的平面分布及变化规律,对煤矿今后的开发有重要的意义。  相似文献   

11.
宝鼎矿区系属山间盆地陆相煤田。煤系厚达2000多米,煤层多至百余层。煤层特点是:标志不明,顶板硬;同一层的顶板差异很大,有的顶板为坚硬的石英砂岩,甚至是砾岩直接见煤。煤层很薄,变化大;厚度一般不到一米,煤层又常出现增厚、分叉、缺失或尖灭,即使同一剖面相邻钻孔亦难以进行对比,遇有断层,褶皱更难予测。指导见煤不准。结构复杂,夹干多;一层煤就常有数层,个别多达20层夹干,且煤质不一,同一层煤就常有粉末状、鳞片状、条带块状等。  相似文献   

12.
宁夏王洼煤矿补充勘探区延安组第二含煤段中8号煤组厚度大、结构复杂,在详细叙述8煤组各分煤层特征基础上.根据标志层特征、层间距特征及地球物理特征对各分煤层进行了对比,对比结果显示,8煤层为煤组主体煤层,厚度变化小,属稳定煤层;8—2煤层为局部可采不稳定煤层;8—3煤层为有可采见煤点但不连成片的不可采煤层;勘探区西部边界外由于地处鄂尔盆地盆地边缘存在无煤区。  相似文献   

13.
鱼田堡煤矿所开采的含煤地层是二叠纪龙潭组,含煤六层,其中四、六号煤是主采煤层。早在建井期间的1958年5月26日,在+150米水平石门的探钻首次引起四号煤层瓦斯突出以来,截止1981年2月突出次数达267次,其中四号煤层158次,六号煤层107次,五号煤层2次。在四号煤层发生突出而六号煤层未发生突出的时期,曾选择六号煤层作为解放层来解放四号煤层。直到六号煤层与1961年不断发生冲突以后,认识到六号煤层也是突出煤层,又选择极薄的三号煤层作为解放层开采。   相似文献   

14.
上二迭统龙潭组是湘南的主要含煤建造。煤层发育良好,分布面积广,储量丰富,大力发展本区煤炭工业,对于迅速扭转北煤南运,加快我省工业建设步伐,有着重大意义。龙潭组的岩性主要为碎屑岩、泥岩、炭质泥岩和煤层组成,为一套过渡相~陆相的沉积。根据岩性、岩相、古生物和含煤性,可明显地分为上下两段,上段厚143~435米,下段厚150~432米。含煤数层到二十多层,多集中于上段,下段基本不含煤(仅在个别地区偶见煤线)。含煤层数和煤层总厚因地而异,变化颇大,但却与煤系厚薄密切相关。煤系厚度大,则煤层层数多,煤层总厚亦大,反之亦然。煤层由上而下,分别命名为1、2、3、4、5、6、7,其中5、6煤层发育较好,普遍可采。   相似文献   

15.
用回归分析评价B2煤厚的影响因素   总被引:5,自引:0,他引:5  
1 地质概况吴桂桥井田属于豫南确山煤田,含煤地层为石炭二叠系,含煤层35层,其中可采煤层22层,主要可采煤层7层。位于煤系下部的B_2煤层相当于豫西的二_1煤,是本区最主要的可采煤层。对影响B_2煤层厚度变化的因素,以往多从沉积环境、地质构造等方面进行定性描述和评价。本文拟通过3个原始资料:侵入B_2煤的火成岩厚度、山西组内砂岩厚度和山西组地层厚度,采用多元回归分析方法研究其对B_2煤厚的影响程度,并作出定量评价。  相似文献   

16.
3月17日,东疆煤炭资源勘查项目在库木塔格-沙尔湖预查区取得重大突破,发现了厚度为151.34m的巨厚煤层,这是目前东疆地区单层煤厚度最大的煤层。 据新疆地矿局第一地质大队库木塔格-沙尔湖煤炭资源勘查项目地质技术负责人王世新介绍,该孔设计孔深为700m,当钻进到472.2m时进入了第12层煤层,到3月17日623.54m时打穿了这层主煤层,厚度达到151.34m。  相似文献   

17.
阿不亥勘查区位于东胜煤田东北部,区内主要含煤岩系为侏罗系中下统延安组,主要含5个煤组,含煤9~22层,平均15层。含煤地层岩性空间上变化频繁,给煤岩层对比研究工作带来很大难度。文章通过选取岩性组合对比法、标志层法、层间距法和测井曲线对比法并结合地震剖面成果,对区内煤层进行综合对比研究,共编号煤层18层。其中,可采煤层15层,不可采煤层3层,可采煤层中基本全区可采煤层3层(4-1、4-2中、6-2中),大部可采煤层9层(2-2上、2-2中、2-2下、3-1、3-2、4-2上、5-1、6-2上、6-2下),局部可采煤层3层(2-1、3-2下、6-1)。主要可采煤层(基本全区可采和全区大部可采)对比可靠程度相对较高,煤层结构简单,厚度变化较小,属于较稳定煤层。  相似文献   

18.
贯二中井田应用灰成分进行煤层对比   总被引:1,自引:0,他引:1  
湖南马田矿区贯二中井田含煤地层为上二迭统龙潭组,共含煤8层。主要可采煤层为3~2煤层,次要可采煤层为2煤层和4~2煤层。全矿区的主要可采煤层4煤层和5煤层,在本井田变为次要煤层甚至不可采。由于3~2煤层伪顶泥岩比较发育,局部很难和2煤层的顶板泥岩区分。通过灰成分分析,发现3~2煤层灰成分中SiO2的含量比2煤层高得多,又发见3~2煤层灰成分中Fe2O3的含量比2媒层低得多。   相似文献   

19.
依托“西部煤炭资源高精度三维地震勘探技术”项目工程,对晋城某矿南翼大巷东南区5m×5m×1ms的三维地震数据体,采用三维地震属性参数预测煤层厚度及其变化规律:沿3煤层、15煤层10ms时窗提取地震属性42种,根据钻孔资料,计算出煤厚与地震属性相关系数;从中优选出相关系数大于0.35的地震属性,其中3煤层9个、15煤层10个;然后进行地震属性互相关分析,优选出与3煤、15煤层厚度相关系数较大的4种属性,建立预测煤厚的BP神经网络模型,分别选取3煤层12个、15煤层4个实测数据作为学习训练和测试样本,以钻孔地震属性作为学习样本,对网络进行训练,最终获得全区煤层厚度。经与预留钻孔成果资料对比,预测精度较高,结果可用。  相似文献   

20.
滇黔北探区赋煤向斜众多,多薄煤层发育,含气量较高,煤层气资源丰富,是筠连外围重要的拓展区块。基于大量煤田孔及煤层气试验井,分析煤层气地质条件,建立多层合采有利区优选评价方法:多层次模糊数学+关键指标法。首先,基于层次递阶优选构建评价模型并确定关键指标,明确关键指标为合采系数、煤体结构、含气量,其中,合采系数由最优合采跨度及合采累计煤厚构成,并给出关键指标的定量评价表,然后,运用模糊数学计算公式,得到储层评分结果,最终获得多层合采有利区优选结果。结果显示:研究区晚二叠世龙潭组/宣威组煤层最多可达到20层以上,可采煤层一般3层左右,煤层总厚度一般在6 m以上,煤层层数及煤层厚度由东南向西北逐渐减少或减薄。大部分区域主力煤层为C5(M11)煤层,厚度一般在2 m以上,其灰分质量分数平均为27.73%,为中灰煤,煤级主要为贫煤–无烟煤。各向斜主力煤层含气性差异性较大,含气量最大可达到30.53 m3/t。研究区煤体结构以原生结构煤和碎裂结构煤为主。以C5(M11)煤层分别向上或向下合采计算合采系数,由此形成了两个合采层段,多层合采Ⅰ类有利区主要位于研究区可乐向斜中西部,牛场–以古向斜南部,镇雄向斜南部,庙坝向斜东南部,洛旺向斜中西部,石坎向斜中西部。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号