首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We have shown that the phenomenological models with a cosmological constant of the type Λ=β( ) and Λ=3αH 2, where R is the scale factor of the universe and H is the Hubble constant, are equivalent to a quintessence model with a scalar (φ) potential of the formV∝φ-n, n= constant. The equation of state of the cosmic fluid is described by these parameters (α, β, n) only. The equation of state of the cosmic fluid (dark energy) can be determined by any of these parameters. The actual amount of dark energy will define the equation of state of the cosmic fluid.All of the three forms can give rise to cosmic acceleration depending the amount of dark energy in the universe.  相似文献   

2.
The epoch of reionization (EoR) sets a fundamental benchmark in cosmic structure formation, corresponding to the formation of the first luminous objects that act to ionize the neutral intergalactic medium (IGM). Recent observations at near-IR and radio wavelengths imply that we are finally probing into this key epoch of galaxy formation at z 6. The Square Kilometer Array (SKA) will provide critical insight into the EoR, in a number of ways. First, the ability of the SKA to image the neutral IGM in 21-cm emission is a truly unique probe of the process of reionization, and is recognized as the next necessary and fundamental step in our study of the evolution of large scale structure and cosmic reionization. Second, study of HI 21-cm absorption toward the first radio loud objects probes small to intermediate scale structure in the neutral ‘cosmic web’, as well as HI in the first collapsed structures (proto-disks and mini-halos). And third, the incomparable sensitivity of the SKA allows for the study of the molecular gas, dust, and star formation activity in the first galaxies, as well as the radio continuum emission from the first accreting massive black holes. Such objects will be obscured at optical wavelengths due to absorption by the neutral IGM.  相似文献   

3.
Hypersurface–homogeneous cosmological models containing a bulk viscous fluid with time varying G and Λ have been presented. We have shown that the field equations are solvable for any arbitrary cosmic scale function. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of the energy density. Exact solutions of Einstein’s field equations are obtained which represent an expanding, shearing and accelerating/decelerating models of the universe. The physical and kinematical behaviours of the models are also discussed.  相似文献   

4.
In this study, we consider a flat Friedmann-Robertson-Walker (FRW) universe in the context of Palatini f(R) theory of gravity. Using the dynamical equivalence between f(R) gravity and scalar-tensor theories, we construct a point Lagrangian in the flat FRW spacetime. Applying Noether gauge symmetry approach for this f(R) Lagrangian we find out the form of f(R) and the exact solution for cosmic scale factor. It is shown that the resulting form of f(R) yield a power-law expansion for the scale factor of the universe.  相似文献   

5.
Assuming the time-dependent equation of state p=λ(t)ρ, five dimensional cosmological models with viscous fluid for an open universe (k=−1) and flat universe (k=0) are presented. Exact solutions in the context of the rest mass varying theory of gravity proposed by Wesson (Astron. Astrophys. 119, 145, 1983) are obtained. It is found that the phenomenon of isotropisation takes place in this theory, i.e. the mass scale factor A(t) which characterizes the rest mass of a typical particle is evolving with cosmic time just as the spatial scale factor R(t). It is further found that rest mass is approximately constant in the present universe.  相似文献   

6.
In this paper, we show how the rescattering of cosmic microwave background photons after cosmic reionization can give a significant linear contribution to the temperature–matter cross-correlation measurements. These anisotropies, which arise via a late-time Doppler effect, are on scales much larger than the typical scale of non-linear effects at reionization; they can contribute to degree scale cross-correlations and could affect the interpretation of similar correlations resulting from the integrated Sachs–Wolfe effect. While expected to be small at low redshifts, these correlations can be large given a probe of the density at high redshift, and so could be a useful probe of the cosmic reionization history.  相似文献   

7.
The consequences of antimatter bodies on the very high energy primary cosmic ray flux are considered. The effects of various models of cosmic ray origin and properties of astrophysical parameters are discussed. A simple expression for the production of antiprotons inNN collisions as a function of energy of the incident proton is obtained by utilizing characteristics of particles produced in high energy collisions. It is assumed that sufficient time will have elapsed for all antibaryons to decay to antiprotons. It is shown that the measurement of antinuclei in the primary cosmic ray spectrum above 1017 eV could help to establish the size of antimatter bodies.This research was supported by A.F.O.S.R. Grant No. F-44620-69-C-0019.  相似文献   

8.
The inhomogeneous Bianchi-I model based on Lyra's geometry has been studied in the cosmological theory in presence of a massless inhomogeneous scalar field whose potential has a flat part. The field equations are solved using separation of variables and it is shown that one of the time part of the field equations are solvable for any arbitrary other cosmic scale function. Solutions for a particular form of cosmic scale (time part) is presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Bianchi type I perfect fluid cosmological model is investigated with a variable cosmological term. Einstein’s field equations are solved for any arbitrary cosmic scale factor. The main result of the study is the expression for cosmological term as a power law of scale factor. The age of the universe can also be readily calculated.  相似文献   

10.
We present a class of exact cosmological solutions of Brans-Dicke (B-D) equations with cosmological constant in flat Robertson-Walker metric. These solutions are based on the relation øR n= constant between the B-D field and the scale factor of the universe. This relation turns out to be consistent with the equation of statep =m for the cosmic matter, provided thatn andm are suitably related to each other. Several special cases and asymptotic solutions are derived and discussed.  相似文献   

11.
We obtain some cosmological models that are exact solutions of Einstein's field equations. The metric utilized is Marder's metric which is Bianchi Type I and the curvature source is a cloud of strings which are one dimensional objects. Bianchi type cosmological models play an important role in the study of the universe on a scale which anisotropy is not ignored. In this paper we have investigated the effect of cosmic strings on the cosmic microwave background anisotropy. Various physical and geometrical properties of the model are also discussed. The solutions have reported that the cosmic microwave background anisotropy may due to the cosmic strings.  相似文献   

12.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

13.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   

14.
An interpretation of the cosmological redshift in terms of a cosmic ether is given. We study a Robertson-Walker cosmology in which the ether is phenomenologically defined by a homogeneous and isotropic permeability tensor. The speed of light becomes so a function of cosmic time like in a dielectric medium. However, the cosmic ether is dispersion free, it does not lead to a broadening of spectral lines. Locally, in Euclidean frames, the scale factors of the permeability tensor get absorbed in the fundamental constants. Mass and charge scale with cosmic time, and so do atomic energy levels. This substantially changes the interpretation of the cosmological redshift as a Doppler shift. Photon frequencies are independent of the expansion factor; their time scaling is determined by the permeability tensor. The impact of the ether on the luminosity-distance, on the distance-redshift relation, and on galactic number counts is discussed. The Hubble constant is related to the scale factors of the metric and the permeability tensor. We study the effects of the ether at first in comoving Robertson-Walker coordinates, and then, in the context of a flat but expanding space- time, in the globally geodesic rest frames of galactic observers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Several general features of nucleation characteristics of low density cosmic clouds are discussed. These are: (1) tendency for metastable condensates to form, (2) non-occurrence of nominal refractory molecule in the gas, (3) a strong temperature dependence of condensation at relatively low temperatures, and (4) significant vibrational disequilibrium in cosmic clouds. These support previous analyses by the author which indicate that equilibrium calculations have restricted applicability. A kinetic treatment of condensation is required for cosmic grains and the possibility of formulating such an analysis is pointed out.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium, held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

16.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

17.
The measured anisotropies in the temperature of the cosmic microwave background radiation (CMB) by the Cosmic Background Explorer (COBE) are consistent with models of gravitational collapse for the formation of large scale structure in the universe. The amplitude of cosmological fluctuations on the largest scales is fixed by COBE. From COBE's data it is also possible to test for the shape of the primordial spectrum. Statistical tests using COBE's two year data and based on the geometric characteristics of anisotropy spots taking into account cosmic variance and the relevant experimental details indicate that the primordial spectrum has a slope in the rangen = 0.8 – 1.3. Possible identification of hot and cold spots of cosmological origin is also given.Presented at the Fourth United Nations/European Space Agency Workshop on Basic Space Science. Cairo, Egypt, 27 June - 1 July 1994.  相似文献   

18.
We utilise a form for the Hubble parameter to generate a number of solutions to the Einstein field equations with variable cosmological constant and variable gravitational constant. The Hubble law utilised yields a constant value for the deceleration parameter. A variety of solutions is presented in the Robertson-Walker spacetimes. A generalisation of the cosmic scale factor is utilised in the anisotropic Bianchi I spacetime to illustrate that new solutions may also be found in spacetimes with less symmetry than Robertson-Walker. We also show that the constant deceleration parameter used is consistent with alternate theories of gravity by considering the scalar-tensor theory of Lau and Prokhovnik with ak = 0 Robertson-Walker background.  相似文献   

19.
The energy composition of the Universe, as emerged from the Type Ia supernova observations and the WMAP data, looks preposterously complex, – but only at the first glance. In fact, its structure proves to be simple and regular. An analysis in terms of the Friedmann integral enables to recognize a remarkably simple time-independent covariant robust recipe of the cosmic mix: the numerical values of the Friedmann integral for vacuum, dark matter, baryons and radiation are approximately identical. The identity may be treated as a symmetry relation that unifies cosmic energies into a regular set, a quartet, with the Friedmann integral as its common genuine time-independent physical parameter. Such cosmic internal (non-geometrical) symmetry exists whenever cosmic energies themselves exist in nature. It is most natural for a finite Universe suggested by the WMAP data. A link to fundamental theory may be found under the assumption about a special significance of the electroweak energy scale in both particle physics and cosmology. A freeze-out model developed on this basis demonstrates that the physical nature of new symmetry might be due to the interplay between electroweak physics and gravity at the cosmic age of a few picoseconds. The big ‘hierarchy number’ of particle physics represents the interplay in the model. This number quantifies the Friedmann integral and gives also a measure to some other basic cosmological figures and phenomena associated with new symmetry. In this way, cosmic internal symmetry provides a common ground for better understanding of old and recent problems that otherwise seem unrelated; the coincidence of the observed cosmic densities, the flatness of the co-moving space, the initial perturbations and their amplitude, the cosmic entropy are among them.  相似文献   

20.
(i) The controversy of dynamo or primordial origin of galactic magnetic fields is summarized and extended to show that the dynamo theory appears to fail. However, much more important than their origin are the characteristics of the fields and their interactions with the gas and cosmic rays. (ii) A passive magnetic field frozen into a turbulent plasma is not dissipated like a cloud of smoke (turbulent or eddy diffusion) as believed previously. On the contrary it is amplified exponentially until, within a few eddy periods, either the growing magnetic stresses halt the turbulence or the field becomes chaotic. Even if the Petschek reconnection mechanism operates, the field is always disordered to a scale <0.1L, whereL is the eddy dimension. The investigation may at last provide a semi-quantitative deductive theory of hydromagnetic eddies. (iii) It is concluded that the gas motions observed in our Galaxy are not convective but are mainly hydromagnetic waves or oscillations, with the magnetic field in control. The significance of this result is discussed in connection with the overall gas velocity field, the creation of stars and stellar systems, and with the origin and distribution of cosmic rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号