首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric Fe i line at 6173.34 Å and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning ±172 mÅ around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and γ-ray spectra (this was the first γ-ray flare of Cycle 24). The Fe i line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.  相似文献   

2.
The observational data permit us to establish clear statistical correlations between different parameters of stellar flare activity and the characteristics of quiet stars. These relations are:
  1. between energies and frequencies of flares on stars of different luminosities;
  2. between total radiation energies of flares and quiet stars both in X-ray and Balmer emission lines;
  3. between flare decay rates just after the maxima and flare luminosities at maxima.
  相似文献   

3.
An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
  1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
  2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
  3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
  4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
  5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
  6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
  7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
  8. No unusual velocities are observed in the photosphere at flare time.
  相似文献   

4.
On 21 September 2012, we carried out spectral observations of a solar facula in the Si?i 10827 Å, He?i 10830 Å, and H\(\upalpha\) spectral lines. Later, in the process of analyzing the data, we found a small-scale flare in the middle of the time series. Based on the anomalous increase in the absorption of the He?i 10830 Å line, we identified this flare as a negative flare.The aim of this article is to study the influence of the negative flare on the oscillation characteristics in the facular photosphere and chromosphere.We measured the line-of-sight (LOS) velocity and intensity of all the three lines as well as the half-width of the chromospheric lines. We also used the Helioseismic and Magnetic Imager (HMI) magnetic field data. The flare caused a modulation of all these parameters. In the location of the negative flare, the amplitude of the oscillations increased four times on average. In the adjacent magnetic field local maxima, the chromospheric LOS velocity oscillations appreciably decreased during the flare. The facular region oscillated as a whole with a 5-minute period before the flare, and this synchronicity was disrupted after the flare. The flare changed the spectral composition of the LOS magnetic field oscillations, causing an increase in the low-frequency oscillation power.  相似文献   

5.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   

6.
We report on a new method to compute the flare reconnection (RC) flux from post-eruption arcades (PEAs) and the underlying photospheric magnetic fields. In previous works, the RC flux has been computed using the cumulative flare ribbon area. Here we obtain the RC flux as the flux in half of the area underlying the PEA in EUV imaged after the flare maximum. We apply this method to a set of 21 eruptions that originated near the solar disk center in Solar Cycle 23. We find that the RC flux from the arcade method (\(\Phi_{\mathrm{rA}}\)) has excellent agreement with the flux from the flare-ribbon method (\(\Phi_{\mathrm{rR}}\)) according to \(\Phi_{\mathrm{rA}} = 1.24(\Phi_{\mathrm{rR}})^{0.99}\). We also find \(\Phi_{\mathrm{rA}}\) to be correlated with the poloidal flux (\(\Phi_{\mathrm{P}}\)) of the associated magnetic cloud at 1 AU: \(\Phi_{\mathrm{P}} = 1.20(\Phi_{\mathrm{rA}})^{0.85}\). This relation is nearly identical to that obtained by Qiu et al. (Astrophys. J. 659, 758, 2007) using a set of only 9 eruptions. Our result supports the idea that flare reconnection results in the formation of the flux rope and PEA as a common process.  相似文献   

7.
X-ray, extreme-ultraviolet and optical observations of a solar flare are discussed. It is shown that the flare exemplifies a class of transient events characterized by long duration and long decay time and by the development of high systems of loops, generally brighter at the top. In contrast with compact short lifetime events, the distinctive properties of this class of transients are:
  1. The disruption of the magnetic configuration at the flare onset, as indicated by prominence eruption or activation and by associated white-light coronal transients;
  2. a continuous energy deposition, presumably at the top of loops, during a large fraction of the flare development and well after the intensity peak;
  3. a continuous supply of additional material to the top of loops, with subsequent downflows and out-of-hydrostatic equilibrium conditions.
  相似文献   

8.
Rapidly moving transient features have been detected in magnetic and Doppler images of super-active region NOAA 10486 during the X17/4B flare of 28 October 2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km?s?1. These features were located near the previously reported compact acoustic (Donea and Lindsey, Astrophys. J. 630, 1168, 2005) and seismic sources (Zharkova and Zharkov, Astrophys. J. 664, 573, 2007). We examine the origin of these features and their relationship with various aspects of the flares, viz., hard X-ray emission sources and flare kernels observed at different layers: i) photosphere (white-light continuum), ii) chromosphere (Hα 6563 Å), iii) temperature minimum region (UV 1600 Å), and iv) transition region (UV 284 Å).  相似文献   

9.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   

10.
In this article, an automated solar flare detection method applied to both full-disk and local high-resolution H\(\upalpha\) images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of H\(\upalpha\) solar flares.  相似文献   

11.
Using the Baranger-Mozer method, we explore the possibility of diagnosing the flare plasma of forbidden Hei lines, that permits the determination of the plasma oscillation frequency and noise level. Examination of the Hei lines observed in solar flare has led us to conclude that:
  1. the appearance of satellites of forbidden components in the flares spectrum, due to turbulent electric fields, is the most probable for Hei 3819.606 Å lines;
  2. the Baranger-Mozer method is more sensitive to the high-frequency component of turbulent fields than to the low-frequency ones;
  3. the upper limit of the turbulent oscillation level in flares is evaluated.
In the spectrum of the solar flare of 26 September, 1963 we detected satellites of the forbidden component of the 3820 Å line and used its relative intensity to derive the level of low-frequency oscillations (~1.5 kVcm-1).  相似文献   

12.
We continued the analysis of 279 G-type stars with superflares (energies in the range of 1033–1036 erg). We calculated the SFL parameter (part of the stellar surface which emits in the flare). The SFL estimates were derived from the relation connecting this value with the amplitude of the flare and its radiation on the assumption of the blackbody character of the emission at times close to its maximum. Most SFL values are in the range of 0–0.1, with values of 0.2–0.4 for some strong flares. Dependence of SFL on effective temperature for stars with superflares is similar to that found earlier for the spottedness parameter S. The SFL distribution reaches its maximum in the temperature range of about 5100–5250 K and decreases with the effective temperature increase. We suggested an assumption on the presence of bimodal distribution in the “SFL–rotation period” relation with a gap for objects with rotation periods P of about 10 days. For stars with P less than 10 days, the given data can indicate a decrease in flare areas with the P increase. Our analysis showed that significant changes both in flare energy and in flare areas can be achieved with small changes in spottedness S for one and the same star.  相似文献   

13.
We have analysed 64 flares observed with GOES and RHESSI in the 3.1?–?24.8 keV band (0.5?–?4 Å). Flares were randomly chosen to represent different GOES classes, between B1 and M6. RHESSI was used to image the flaring region on the surface of the Sun. We derived the spatial area of the flare on the surface of the Sun from the imaging observations, scaled it dimensionally to volume, and used the spectroscopically derived emission measure to obtain several flare parameters. We experimented with several imaging methods and selected the use of 50% maximum image photon flux contours to define the flare area (F 50%). Most of the flares showed a single spherical loop-top source. The volume measurement for V, temperature T, and electron density N produced power indices that showed no correlation within the boundaries of error. Larger flares by loop-top source volume are thus neither hotter nor denser. The background-subtracted GOES flux?–?RHESSI Total Emission Measure (TEM RHESSI) and TEM GOES?–?TEM RHESSI dependencies were in agreement with the instrument characteristics and earlier studies. Nonthermal flux was noticed to increase with thermal energy and TEM, which can be said to agree with the “Big Flare Syndrome,” with nonthermal photon flux being considered as one flare manifestation.  相似文献   

14.
We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986–2008, in order to investigate the long- and mid-term periodicities including the Rieger (\({\sim }130\) to \({\sim }190\) days), quasi-period (\({\sim }200\) to \({\sim }374\) days), and quasi-biennial periodicities (\({\sim }1.20\) to \({\sim }3.27\) years) during the combined solar cycles 22–23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of \({\sim }1.43\) years and for solar flare index of \({\sim }1.41\) year, and galactic cosmic ray, \({\sim }1.35\) year, during combined solar cycles 22–23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22–23, we found that galactic cosmic ray modulation at mid cut-off rigidity (\(\hbox {Rc} = 2.43\hbox {GV}\)) is anti-correlated with time-lag of few months.  相似文献   

15.
16.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

17.
Evidence is discussed showing that a representative solar flare event comprises three or more separate but related phenomena requiring separate mechanisms. In particular it is possible to separate the most energetic effect (the interplanetary blast) from the thermal flare and from the rapid acceleration of particles to high energies. The phenomena are related through the magnetic structure characteristic of a composite flare event, being a bipolar surface field with most of its field lines ‘closed’. Of primary importance are helical twists on all scales, starting with the ‘flux rope’ of the spot pair which was fully twisted before it emerged. Subsequent untwisting by the upward propagation of an Alfvén twist wave provides the main flare energy.
  1. The interplanetary blast model is based on subsurface, helically twisted flux ropes which erupt to form spots and then transfer their twists and energy by Alfvén-twist waves into the atmospheric magnetic fields. The blast is triggered by the prior-commencing flash phase or by a coronal wave.
  2. The thermal flare is explained in terms of Alfvén waves travelling up numerous ‘flux strands’ (Figure 3) which have frayed away from the two flux ropes. The waves originate in interaction (collisions, bending, twisting, rubbing) between subsurface flux strands; the sudden flash is caused by a collision. The classical twin-ribbon flare results from the collision of a flux rope with a tight bunch of S-shaped flux strands.
  3. The impulsive acceleration of electrons (hard X-ray, EUV, Hα and radio bursts) is tentatively attributed to magnetic reconnection between fields in two parallel, helically twisted flux strands in the low corona.
  4. Flare (Moreton) waves in the corona have the same origin as the interplanetary blast. Sympathetic flares represent only the start of enhanced activity in a flare event already in the slow phase. Filament activation also occurs during the slow phase as twist Alfvén waves store their energy in the atmosphere.
  5. Flare ejecta are caused by Alfvén waves moving up flux strands. Surges are attributed to packets of twist Alfvén waves released into bundles of flux strands; the waves become non-linear and drive plasma upwards. Spray-type prominences result from accumulations of Alfvén wave energy in dome-shaped fields; excessive energy density eventually explodes the field.
  相似文献   

18.
Using the spectral data of representative solar flares observed with the infrared detector system of the solar spectrograph at Purple Mountain Observatory, we study the spectroscopic characteristics of solar flares in the Hα, the Ca i i 8?542 Å, and the He i 10?830 Å lines in different phases and various locations of flares and discuss their possible implications coupled with space observations. Our results show that in the initial phase of a flare the Hα line displays a red shift only with no wide wing. Large broadenings of the Hα line are observed a few minutes after the flare onset within small regions of 3?–?5′′ in both disk and limb flares with and without nonthermal processes. Far wings similar to those of damping broadening appear not only in the Hα line but in the He i 10?830 Å line as well in flares with nonthermal processes. Sometimes we even detect weak far-wing emission in the Ca i i 8?542 Å line in disk flares. Such large broadenings are observed in both the footpoints and the flare loop-top regions and possibly result from strong turbulence and/or macroscopic motions. Therefore, the so-called nonthermal wing of the Hα line profile is not a sufficient condition to distinguish whether nonthermal electrons are accelerated or not in a flare. The Ca i i 8?542 Å line shows lower intensity in the loop-top regions and higher intensity in the parts close to the solar surface. Emissions larger than nearby continuum in the He i 10?830 Å line are detected only in small regions with strong X-ray emissions and avoid sunspot umbrae.  相似文献   

19.
We study quasi-periodic pulsations (QPPs) in the SOL2014-09-10 event that was detected by the Geostationary Operational Environmental Satellites (GOES), the Atmospheric Imaging Assembly (AIA) and the Extreme Ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO), and the Gamma Ray Burst Monitor (GBM) onboard the Fermi satellite. Previous studies have found that this flare displays four-minute QPPs in a broad range of wavelengths. In this article, we find that this event also shows QPPs with a period of around one minute. Using the Fast Fourier Transform (FFT) method, the light curves are decomposed into fast- and slowly varying components with a separation at \({\approx}\,100~\mbox{seconds}\). The four-minute QPPs are in the slowly varying component, and the one-minute QPPs are identified with the fast-varying components in the impulsive and maximum phases. Similarly as the four-minute QPPs, the one-minute QPPs are simultaneously found in soft X-rays (SXR), extreme ultraviolet (EUV), and hard X-ray (HXR) emission. High correlations are found between the fast-varying components at the different wavelengths, especially between SXR and HXR. The spatial location of the sources of one-minute QPPs differ from those of the four-minute QPPs. The four-minute QPPs appear in the whole flare region, while the one-minute QPPs tend to originate from the flare loop footpoints. This finding provides an observational constraint for the physical origin of the QPPs.  相似文献   

20.
Solar active regions (ARs) that produce major flares typically exhibit strong plasma shear flows around photospheric magnetic polarity inversion lines (MPILs). It is therefore important to quantitatively measure such photospheric shear flows in ARs for a better understanding of their relation to flare occurrence. Photospheric flow fields were determined by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) method to a large data set of 2548 coaligned pairs of AR vector magnetograms with 12-min separation over the period 2012?–?2016. From each AR flow-field map, three shear-flow parameters were derived corresponding to the mean (\(\langle S\rangle \)), maximum (\(S_{\mathrm{max}}\)) and integral (\(S_{\mathrm{sum}}\)) shear-flow speeds along strong-gradient, strong-field MPIL segments. We calculated flaring rates within 24 h as a function of each shear-flow parameter and we investigated the relation between the parameters and the waiting time (\(\tau \)) until the next major flare (class M1.0 or above) after the parameter observation. In general, it is found that the larger \(S_{\mathrm{sum}}\) an AR has, the more likely it is for the AR to produce flares within 24 h. It is also found that among ARs which produce major flares, if one has a larger value of \(S_{\mathrm{sum}}\) then \(\tau \) generally gets shorter. These results suggest that large ARs with widespread and/or strong shear flows along MPILs tend to not only be more flare productive, but also produce major flares within 24 h or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号