首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
As the observational signature of the footprints of solar magnetic field lines open into the heliosphere, coronal holes provide a critical measure of the structure and evolution of these lines. Using a combination of Solar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT), Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), and Solar Terrestrial Relations Observatory/Extreme Ultraviolet Imager (STEREO/EUVI A/B) extreme ultraviolet (EUV) observations spanning 1996?–?2015 (nearly two solar cycles), coronal holes are automatically detected and characterized. Coronal hole area distributions show distinct behavior in latitude, defining the domain of polar and low-latitude coronal holes. The northern and southern polar regions show a clear asymmetry, with a lag between hemispheres in the appearance and disappearance of polar coronal holes.  相似文献   

2.
Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010?–?2017 were used to continue our previous analyses reported by Didkovsky and Gurman (Solar Phys.289, 153, 2014a) and Didkovsky, Wieman, and Korogodina (Solar Phys.292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two “standard” solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a “typical” trend of instrumental degradation or a long-term activity profile from the He?ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.  相似文献   

3.
We present here an interesting two-step filament eruption during 14?–?15 March 2015. The filament was located in NOAA AR 12297 and associated with a halo Coronal Mass Ejection (CME). We use observations from the Atmospheric Imaging Assembly (AIA) and Heliospheric Magnetic Imager (HMI) instruments onboard the Solar Dynamics Observatory (SDO), and from the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO). We also use \(\mbox{H}\upalpha\) data from the Global Oscillation Network Group (GONG) telescope and the Kanzelhoehe Solar Observatory. The filament shows a first step eruption on 14 March 2015 and it stops its rise at a projected altitude \({\approx}\,125~\mbox{Mm}\) on the solar disk. It remains at this height for \({\approx}\,12~\mbox{hrs}\). Finally it erupts on 15 March 2015 and produces a halo CME. We also find jet activity in the active region during both days, which could help the filament de-stabilization and eruption. The decay index is calculated to understand this two-step eruption. The eruption could be due to the presence of successive instability–stability–instability zones as the filament is rising.  相似文献   

4.
Power spectra of segmentation-cell length (a dominant length scale of EUV emission in the transition region) from full-disk He?ii extreme ultraviolet (EUV) images observed by the Extreme ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO) and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) during periods of quiet-Sun conditions for a time interval from 1996 to 2015 were analyzed. The spatial power as a function of the spatial frequency from about 0.04 to 0.27 (EIT) or up to 0.48 (AIA) Mm?1 depends on the distribution of the observed segmentation-cell dimensions – a structure of the solar EUV network. The temporal variations of the spatial power reported by Didkovsky and Gurman (Solar Phys. 289, 153, 2014) were suggested as decreases at the mid-spatial frequencies for the compared spectra when the power curves at the highest spatial frequencies of 0.5 pix?1 were adjusted to match each other. This approach has been extended in this work to compare spectral ratios at high spatial frequencies expressed in the solar spatial frequency units of Mm?1. A model of EIT and AIA spatial responses allowed us to directly compare spatial spectral ratios at high spatial frequencies for five years of joint operation of EIT and AIA, from 2010 to 2015. Based on this approach, we represent these ratio changes as a long-term network transformation that may be interpreted as a continuous dissipation of mid-size network structures to the smaller-size structures in the transition region. In contrast to expected cycling of the segmentation-cell dimension structures and associated spatial power in the spectra with the solar cycle, the spectra demonstrate a significant and steady change of the EUV network. The temporal trend across these structural spectra is not critically sensitive to any long-term instrumental changes, e.g. degradation of sensitivity, but to the change of the segmentation-cell dimensions of the EUV network structure.  相似文献   

5.
Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.  相似文献   

6.
The volume of data anticipated from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) highlights the necessity for the development of automatic-detection methods for various types of solar activity. Initially recognized in the 1970s, it is now well established that coronal dimmings are closely associated with coronal mass ejections (CMEs), and they are particularly noted as a reliable indicator of front-side (halo) CMEs, which can be difficult to detect in white-light coronagraph data. Existing work clearly demonstrates that several properties derived from the analysis of coronal dimmings can give useful information about the associated CME. The development and implementation of an automated coronal-dimming region detection and extraction algorithm removes visual observer bias, however unintentional, from the determination of physical quantities such as spatial location, area, and volume. This allows for reproducible, quantifiable results to be mined from very large data sets. The information derived may facilitate more reliable early space-weather detection, as well as offering the potential for conducting large-sample studies focused on determining the geo-effectiveness of CMEs, coupled with analysis of their associated coronal dimming signatures. In this paper we present examples of both simple and complex dimming events extracted using our algorithm, which will be run as a module for the SDO/Computer Vision Centre. Contrasting and well-studied events at both the minimum and maximum of solar cycle 23 are identified in Solar and Heliospheric Observatory/Extreme ultra-violet Imaging Telescope (SOHO/EIT) data. A more recent example extracted from Solar and Terrestrial Relations Observatory/Extreme Ultra-Violet Imager (STEREO/EUVI) data is also presented, demonstrating the potential for the anticipated application to SDO/AIA data. The detection part of our algorithm is based largely on the principle of operation of the NEMO software, namely the detection of significant variation in the statistics of the EUV image pixels (Podladchikova and Berghmans in Solar Phys. 228, 265?–?284, 2005). As well as running on historic data sets, the presented algorithm is capable of detecting and extracting coronal dimmings in near real-time.  相似文献   

7.
L. Gy?ri 《Solar physics》2012,280(2):365-378
Sunspot and white light facular areas are important data for solar activity and are used, for example, in the study of the evolution of sunspots and their effect on solar irradiance. Solar Dynamic Observatory??s Helioseismic and Magnetic Imager (SDO/HMI) solar images have much higher resolution (??0.5????pixel?1) than Solar and Heliospheric Observatory??s Michelson Doppler Imager (SOHO/MDI) solar images (??2????pixel?1). This difference in image resolution has a significant impact on the sunspot and white light facular areas measured in the two datasets. We compare the area of sunspots and white light faculae derived from SDO/HMI and SOHO/MDI observations. This comparison helps the calibration of the SOHO sunspot and facular area to those in SDO observations. We also find a 0.22 degree difference between the North direction in SDO/HMI and SOHO/MDI images.  相似文献   

8.
We compare photospheric line-of-sight magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) instrument with observations from the 150-foot Solar Tower at Mt. Wilson Observatory (MWO), the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO), and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). We find very good agreement between VSM and the other data sources for both disk-averaged flux densities and pixel-by-pixel measurements. We show that the VSM mean flux density time series is of consistently high signal-to-noise ratio with no significant zero offsets. We discuss in detail some of the factors ?C spatial resolution, flux dependence, and position on the solar disk ?C affecting the determination of scaling between VSM and SOHO/MDI or SDO/HMI magnetograms. The VSM flux densities agree well with spatially smoothed data from MDI and HMI, although the scaling factors show a clear dependence on flux density. The factor to convert VSM to HMI increases with increasing flux density (from ??1 to ??1.5). The nonlinearity is smaller for the VSM vs. SOHO/MDI scaling factor (from ??1 to ??1.2).  相似文献   

9.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   

10.
For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.  相似文献   

11.
Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter-tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010.  相似文献   

12.
We have analyzed dimmings, i.e., regions of temporarily reduced brightness, and manifestations of a coronal wave in the famous event of 14 July 2000 using images produced with the EUV telescope SOHO/EIT. Our analysis was inspired by a paper by Andrews (2001, Solar Phys. 204, 181 (Paper I)), in which this event was studied using running-difference EIT images at 195 Å formed by subtraction of a previous image from each current one. Such images emphasize changes of the brightness, location, and configuration of observed structures occurring during the 12-min interval between two subsequent heliograms. However, they distort the picture of large-scale disturbances caused by a CME, particularly, dimmings. A real picture of dimmings can be obtained from fixed-base difference ‘de-rotated’ images. The latter are formed in two stages: first, the solar rotation is compensated using three-dimensional rotation of all images (‘de-rotation’) to the time of a pre-event heliogram, here 10:00 UT, and then the base heliogram is subtracted from all others. We show real dimmings to be essentially different from those described by Andrews (Paper I). The restructuring of large-scale magnetic fields in the corona in connection with the CME was accompanied by the appearance and growth of two large dimmings. One of them was located along the central meridian, southward of the eruption center, at the place of the pre-eruption arcade. Another dimming occupied the space between the flare region and a remote western active region. Several smaller dimmings were observed virtually over the whole solar disk, especially, within the northwest quadrant. We have also revealed a propagating disturbance with properties of a coronal wave in the northern polar sector, where no dimmings were observed. This fact is discussed in the context of probable association between dimmings and coronal waves. Having suppressed the ‘snowstorm’ produced in the EIT images by energetic particles, we have considered dimming manifestations in all four EIT pass bands of 171, 195, 284, and 304 Å as well as the light curves of the main dimmings including several later images at 195 Å. Our analysis shows that the major cause of the dimmings was density depletion that reached up to 30% in this event. The picture of dimmings implies that the CME in the Bastille Day event was an octopus-like bundle of some magnetic ropes, with the ‘arms’ being connected to several active regions disposed over almost the whole visible solar surface.  相似文献   

13.
We carry out an analysis of the mass that is evacuated from three coronal dimming regions observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The three events are unambiguously identified with white-light coronal mass ejections (CMEs) that are associated in turn with surface activity of diverse nature: an impulsive (M-class) flare, a weak (B-class) flare, and a filament eruption without a flare. The use of three AIA coronal passbands allows applying a differential emission measure technique to define the dimming regions and identify their evacuated mass through the analysis of the electronic density depletion associated with the eruptions. The temporal evolution of the mass loss from the three dimmings can be approximated by an exponential equation followed by a linear fit. We determine the mass of the associated CMEs from COR2 data. The results show that the evacuated masses from the low corona represent a considerable amount of the CME mass. We also find that plasma is still being evacuated from the low corona at the time when the CMEs reach the COR2 field of view. The temporal evolution of the angular width of the CMEs, of the dimming regions in the low corona, and of the flux registered by GOES in soft X-rays are all in close relation with the behavior of mass evacuation from the low corona. We discuss the implications of our findings toward a better understanding of the temporal evolution of several parameters associated with the analyzed dimmings and CMEs.  相似文献   

14.
We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric Fe i line at 6173.34 Å and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning ±172 mÅ around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and γ-ray spectra (this was the first γ-ray flare of Cycle 24). The Fe i line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.  相似文献   

15.
We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4?–?7 August 2011, which caused a geomagnetic storm with \(\mathit{Dst}=-110~\mbox{nT}\). The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2?–?4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope was ejected with a speed of about \(200~\mbox{km}\,\mbox{s}^{-1}\) to the height of \(0.25~\mbox{R}_{\odot}\). The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.  相似文献   

16.
The solar neutron detector Space Environment Data Acquisition Equipment – Attached Payload (SEDA-FIB) onboard the International Space Station (ISS) detected several events from the solar direction associated with three large solar flares observed on 05 (X1.1), 07 (X5.4), and 09 (M6.3) March 2012. In this study, we focus on the interesting event of 05 March, present the temporal profiles of the neutrons, and discuss the physics that may be related to a possible acceleration scenario for ions above the solar surface. We compare our data with images of the flares obtained by the ultraviolet telescope Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO).  相似文献   

17.
We analyze EUV spectra of the full solar disk from the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) spanning a period of two years. The observations were obtained via a fortuitous off-axis light path in the 140?–?275 Å passband. The general appearance of the spectra remained relatively stable over the two-year time period, but did show significant variations of up to 25% between two sets of Fe lines that show peak emission at 1 MK and 2 MK. The variations occur at a measured period of 27.2 days and are caused by regions of hotter and cooler plasma rotating into, and out of, the field of view. The CHIANTI spectral code is employed to determine plasma temperatures, densities, and emission measures. A set of five isothermal plasmas fit the full-disk spectra well. A 1?–?2 MK plasma of Fe contributes 85% of the total emission in the CHIPS passband. The standard Differential Emission Measures (DEMs) supplied with the CHIANTI package do not fit the CHIPS spectra well as they over-predict emission at temperatures below log?10 T=6.0 and above log?10 T=6.3. The results are important for cross-calibrating TIMED, SORCE, SOHO/EIT, and CDS/GIS, as well as the recently launched Solar Dynamics Observatory.  相似文献   

18.
The Multi-Application Solar Telescope (MAST) is a 50 cm off-axis Gregorian telescope that has recently become operational at the Udaipur Solar Observatory (USO). An imaging spectropolarimeter is being developed as one of the back-end instruments of MAST to gain a better understanding of the evolution and dynamics of solar magnetic and velocity fields. This system consists of a narrow-band filter and a polarimeter. The polarimeter includes a linear polarizer and two sets of liquid crystal variable retarders (LCVRs). The instrument is intended for simultaneous observations in the spectral lines 6173 Å and 8542 Å, which are formed in the photosphere and chromosphere, respectively. In this article, we present results from the characterization of the LCVRs for the spectral lines of interest and the response matrix of the polarimeter. We also present preliminary observations of an active region obtained using the spectropolarimeter. For verification purposes, we compare the Stokes observations of the active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with that of MAST observations in the spectral line 6173 Å. We find good agreement between the two observations, considering the fact that MAST observations are limited by seeing.  相似文献   

19.
We present the investigation of 11 recurring solar jets that originated from two different sites (site 1 and site 2) close to each other (\({\approx}\,11~\text{Mm}\)) in NOAA active region (AR) 12035 during 15?–?16 April 2014. The jets were observed by the Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamics Observatory (SDO) satellite. Two jets were observed by the telescope of the Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India, in H\(\upalpha\). On 15 April, flux emergence is strong in site 1, while on 16 April, flux emergence and cancellation mechanisms are involved in both sites. The jets of both sites have parallel trajectories and move to the south with a speed between 100 and 360 km?s?1. The jets of site 2 occurred during the second day have a tendency to move toward the jets of site 1 and merge with them. We conjecture that the slippage of the jets could be explained by the complex topology of the region, which included a few low-altitude null points and many quasi-separatrix layers (QSLs), which could intersect with one another.  相似文献   

20.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号