首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Criteria for the recognition of salt-pan evaporites   总被引:6,自引:0,他引:6  
Layered evaporites can accumulate in: (1) ephemeral saline pans, (2) shallow perennial lagoons or lakes, and (3) deep perennial basins. Criteria for recognizing evaporites deposited in these settings have yet to be explicitly formulated. The characteristics of the ephemeral saline pan setting have been determined by examining eight. Holocene halite-dominated pans (salt pans) and their deposits (marine and non-marine) from the U.S., Mexico, Egypt and Bolivia. These salt pans are typified by alternating periods of flooding, resulting in a temporary brackish lake, evaporative concentration, when the lake becomes saline, and desiccation, which produces a dry pan fed only by groundwater. The resulting deposits consist of alternating layers (millimetres to decimetres) of halite and mud. The layers of halite are characterized by: (1) vertical and horizontal cavities, rounded crystal edges and horizontal truncation surfaces, due to dissolution during flooding; (2) vertical ‘chevrons’ and ‘cornets’ grown syntaxially on the bottom during the saline lake stage; (3) halite cements (overgrowths and euhedral cavity linings) and disruption of layering into metre-scale polygons, produced during the desiccation stage. The muddy interbeds are characterized by displacive growth of halite during the desiccation stage. Immediately below the surface of the pan the halite layers are ‘matured’ by repeated episodes of dissolution and diagenetic crystal growth. This results in porous crusts with patches of ‘chevron’ and ‘cornet’ crystals truncated by dissolution, clear diagenetic halite cement, and internal sediment. These layers of ‘mature’ halite closely resemble the patchy cloudy and clear textures of ancient halite deposits. Holocene salt-pans are known to cover thousands of square kilometres and cap halite deposits hundreds of metres thick, so they are realistic models for ancient evaporites in scale, e.g. Permian Salado Formation of New Mexico-Texas, which preserves many primary salt-pan features.  相似文献   

2.
The Permian Hutchinson Salt Member of the Wellington Formation of the Sumner Group of Kansas (USA) has multiple scientific and industrial uses. Although this member is highly utilized, there has not been a sedimentological study on these rocks in over 50 years, and no study has investigated the full thickness of this member. Past publications have inferred a marine origin as the depositional environment. Here, this marine interpretation is challenged. The goals of this study are to fully document sedimentological and stratigraphic characteristics of the Permian Hutchinson Salt Member in the Atomic Energy Commission Test Hole 2 core from Rice County, Kansas. This study documents colour, mineralogy, sedimentary textures, sedimentary structures, diagenetic features and stratigraphic contacts in core slab and thin sections. The Hutchinson Salt Member is composed of five lithologies: bedded halite, siliciclastic mudstone, displacive halite, bedded gypsum/anhydrite and displacive gypsum/anhydrite. These lithologies formed in shallow surface brines and mudflats that underwent periods of flooding, evapoconcentration and desiccation. Of note are the paucity of carbonates, lack of marine-diagnostic fossils, absence of characteristic marine minerals and lithofacies, and the stratigraphic context of the Hutchinson with associated continental deposits. The Hutchinson Salt Member was most likely deposited in an arid continental setting. This new interpretation offers a refined view of Pangaea during the middle Permian time.  相似文献   

3.
The Upper Miocene and Pliocene evaporite deposits of the Atacama Desert of northern Chile (Hilaricos and Soledad Formations) are among the few non‐marine evaporites in which aridity not only formed the deposits, but has also preserved them almost unaltered under near‐surface conditions. These deposits are largely composed of displacive Ca sulphate and halite together with minor amounts of glauberite, thenardite and polyhalite. However, at the base and top of these deposits, there are also beds of gypsum crystal pseudomorphs that originally formed as free‐growth forms within shallow brine bodies, rather than as displacive sediments. The halite is present as interstitial cement, displacive cubes and shallow‐water, bottom‐growth chevron crusts. Most of the calcium sulphate is presently anhydrite, pseudomorphous after gypsum, that was the primary depositional sulphate mineral. The secondary anhydrite formed under early diagenetic conditions after slight burial (some metres) resulting from the effect of strongly evolved pore brines. The anhydrite has been preserved without rehydration during late diagenetic and exhumation stages on account of the arid environment of the Atacama Desert. Both the Hilaricos and the Soledad Formations contain geochemical markers indicating that these Neogene evaporites had a largely non‐marine origin. Bromine content in the halite is very low (few p.p.m.), indicating neither a sedimentological relation with sea water nor the likelihood of direct recycling of prior marine halites. Moreover, the δ34S of sulphates (+4·5‰ to +9‰) also reflects a non‐marine origin, with a strong volcanic influence, although some recycling of Mesozoic marine sulphates cannot be ruled out. δ34S of dissolved sulphate from hot springs and streams in the area commonly displays positive values (+2‰ to +10‰). Leaching of oxidized sulphur and chlorine compounds from volcanoes and epithermal ore bodies, very common in the associated drainage areas, have been the main contribution to the accumulation of evaporites. The sedimentary and diagenetic evolution of the Hilaricos and Soledad evaporites (based on lithofacies analysis) provides information about the palaeohydrological conditions in the Central Depression of northern Chile during the Neogene. In addition, the diagenesis and exhumation history of these evaporites confirms the persistence of strongly arid conditions from Late Miocene until the present. A final phase of tectonism took place permitting the internal drainage to change and open to the sea, resulting in dissolution and removal of a significant portion of these deposits. Despite the extensive dissolution, the remaining evaporites have undergone little late exhumational hydration.  相似文献   

4.
鄂尔多斯盆地东部奥陶系发育巨厚的蒸发岩地层,已有不少学者对其成因提出了不同的假设。本文通过对该区蒸发岩微相分布规律、剖面结构及地球化学等特征的分析,提出该区蒸发岩形成于成盐盆地与外海周期性隔绝的“干化蒸发”条件下的新认识。首次提出用“回灌重溶”机制来解释厚层石盐岩中的泥质薄夹层的成因、各种石盐岩颜色的成因及蒸发岩剖面中缺乏干化蒸发晚期阶段的钾镁盐层的原因,并由此提出 “溶积层”的概念。微相分析表明,在形成蒸发岩的盐坳盆地东部的水下古地形隆起上,发育有堤坝状的礁或生物丘等生物建隆,其在地形上的隆起构成了盐坳盆地与外海的障壁,在海平面下降期间可使盐坳与外海完全隔绝而进入干化蒸发阶段,从而形成了石盐沉积;由海平面上升所造成的突发性海水回灌事件又使先成的石盐层部分溶解(回灌重溶),并由于不溶残余物的富集成层(溶积层)而阻止了下伏石盐层的进一步溶解。这是该区蒸发岩地层中缺少典型干化证据的主要原因。本区奥陶系马家沟组碳酸盐岩与蒸发岩间互分布的地层层序结构特征,主要受控于区域海平面变化旋回,碳酸盐岩主要形成于海侵期和高水位期,蒸发岩则主要形成于低水位期。  相似文献   

5.
《Sedimentary Geology》1999,123(1-2):31-62
Evaporites of the Cretaceous to early Tertiary Maha Sarakham Formation on the Khorat Plateau of southeast Asia (Thailand and Laos) are composed of three depositional members that each include evaporitic successions, each overlain by non-marine clastic red beds, and are present in both the Khorat and the Sakon Nakhon sub-basins. These two basins are presently separated by the northwest-trending Phu Phan anticline. The thickness of the formation averages 250 m but is up to 1.1 km thick in some areas. In both basins it thickens towards the basin centre suggesting differential basin subsidence preceding or during sedimentation. The stratigraphy, lithological character and mineralogy of the evaporites and clastics are identical in both basins suggesting that they were probably connected during deposition. Evaporites include thick successions of halite, anhydrite and a considerable accumulation of potassic minerals (sylvite and carnallite) but contain some tachyhydrite, and minor amounts of borates. During the deposition of halite the basin was subjected to repeated inflow of fresher marine water that resulted in the formation of anhydrite marker beds. Sedimentary facies and textures of both halite and anhydrite suggest deposition in a shallow saline-pan environment. Many halite beds, however, contain a curious `sieve-like' fabric marked by skeletal anhydrite outlines of gypsum precursor crystals and are the product of early diagenetic replacement by halite of primary shallow-water gypsum. The δ34S isotopic values obtained from different types of anhydrite interbedded with halite range from 14.3‰ to 17.0‰ (CDT), suggesting a marine origin for this sulphate. Bromine concentration in the halite of the Lower Member begins around 70 ppm and systematically increases upward to 400 ppm below the potash-rich zone, also suggesting evaporation of largely marine waters. In the Middle Member the initial concentration of bromine in halite is 200 ppm, rising to 450 ppm in the upper part of this member. The bromine concentration in the Upper Member exhibits uniform upward increase and ranges from 200 to 300 ppm. The presence of tachyhydrite in association with the potassic salts was probably the result of: (1) the large volumes of halite replacement of gypsum, on a bed by bed basis, releasing calcium back into the restricted waters of the basin; and (2) early hydrothermal input of calcium chloride-rich waters. The borates associated with potash-rich beds likely resulted from erosion and influx of water from surrounding granitic terrains; however, hydrothermal influx is also possible. Interbedded with the evaporites are non-marine red beds that are also evaporative, with displacive anhydrite nodules and beds and considerable amounts of displacive halite. The δ34S isotopic values of this anhydrite have non-marine values, ranging from 6.4‰ to 10.9‰ (CDT). These data indicate that the Khorat and Sakhon Nakhon basins underwent periods of marine influx due to relative world sea-level rise but were sporadically isolated from the world ocean.  相似文献   

6.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

7.
Abstract New and previously published models of wet aeolian system evolution form a spectrum of types that may be explained in terms of aeolian dune dynamics, rate of water table rise and/or periodicity of interdune flooding. This is illustrated with an example from the Mid‐Triassic (Anisian) Helsby Sandstone Formation, Cheshire, UK. Lenses of damp and wet interdune strata exhibit an intertonguing, transitional relationship with the toe‐sets of overlying aeolian dune units. This signifies dune migration that was contemporaneous with water table‐controlled accumulation in adjacent interdunes. Downwind changes in the geometry and facies of the interdune units indicate periodic expansion and contraction of the interdunes in response to changes in the elevation of the groundwater table and episodic flooding, during which accumulation of dune strata continued relatively uninterrupted. This contrasts with other models for accumulation in wet aeolian systems where interdune flooding is associated with a cessation in aeolian bedform climbing and the formation of a bypass or erosional supersurface. Architectural panels document the detailed stratigraphy in orientations both parallel and perpendicular to aeolian transport direction, enabling a quantitative three‐dimensional reconstruction of genetically related aeolian dune and interdune elements. Sets of aeolian dune strata are composed of grainflow and translatent wind‐ripple strata and are divided by a hierarchy of bounding surfaces originating from oblique migration of superimposed dunes over slipfaceless, sinuous‐crested parent bedforms, together with lee‐slope reactivation under non‐equilibrium flow conditions. Silty‐mudstone and sandstone interdune units are characterized by wind ripple‐, wavy‐ and subaqueous wave ripple‐laminae, desiccation cracks, mud flakes, raindrop imprints, load casts, flutes, intraformational rip‐up clasts and vertebrate and invertebrate footprint impressions and trackways. These units result from accumulation on a substrate that varied from dry‐ through damp‐ to wet‐surface conditions. Interdune ponds were flooded by either fluvial incursions or rises in groundwater table and were periodically subject to gradual desiccation and reflooding. Red silty‐mudstone beds of subaqueous origin pass laterally into horizontally laminated wind‐ripple beds indicating a progressive transition from wet‐ through damp‐ to dry‐surface conditions within a single interdune.  相似文献   

8.
Bristol Dry Lake, a 155 km2 continental-sabkha playa basin in the Mojave Desert of south eastern California, is filled with at least 300 m of interbedded terrigenous clastics, gypsum, anhydrite, and halite. Evaporite facies conform approximately to a bull's eye pattern with gypsum and anhydrite surrounding a basin centre accumulation of halite. Transects through Bristol Dry Lake, from the alluvial fan to the centre of the playa, reveal: (1) crudely-bedded, alluvial fan clastics interfingering with (2) playa-margin sand flat and wadi sand and silt, followed by (3) gypsum, anhydrite, chaotic mud halite, and clay of the saline mud flat, and (4) salt-pan halite beds. Terrigenous clastics were deposited in Bristol Dry Lake by sheetflow and by suspension settling from ponded floodwater. Some sediment has been reworked by aeolian processes to form barchan dunes around the playa margin. Thin nodular-like beds of anhydrite and several types of gypsum occur across most of the playa. Giant hopper-shaped halite cubes are suspended in saline mud flat facies, suggesting that they grew displacively in brine soaked sediment just below the surface. Thick beds (4 m) of halite, in the playa centre, may have formed through a complex alternating history of subaqueous and intrasedimentary precipitation under the influence of periodic floods, intense evaporation and brine-level lowering, and capillary discharge of brines. The stratigraphy in the playa centre is cyclic. An ideal cycle consists of: (1) chaotic mud halite at the base overlain by (2) green to red clay with abundant, giant hoppers, and at the top (3) red clay, gypsum, and anhydrite with flaser- to wavy-bedded sand and silt. This type of cycle probably records a gradual progradation of mud-flat facies over salt pans. Bristol Dry Lake sediments are nearly identical to some of the Permian evaporites of the Permian Basin region, U.S.A. and they can serve as modern analogues for ancient-sabkha facies analysis.  相似文献   

9.
塔里木盆地(简称塔,下同)西南凹陷古新世阿尔塔什组发育巨厚层海相石膏岩,夹薄层泥岩、粉砂岩及灰岩,是塔西南凹陷断续海侵环境下多期次蒸发沉积的产物。野外调查显示,该层海相石膏岩出现于皮拉里、阿尔塔什、麻扎塔格及大山口地区的阿尔塔什组露头剖面。石膏岩在凹陷内分布广泛,在西昆仑山前、南天山山前及麦盖提斜坡带均有发育且沉积厚度比较稳定。石膏岩中主要盐类矿物为石膏、硬石膏。扫描电镜分析发现,石膏岩中尚含石盐、钙芒硝及含钾镁的硫酸盐等;石膏岩样品中石盐、石膏、硬石膏等多呈细晶或自形微晶,推测阿尔塔什组沉积期,古盐湖曾出现过富钾卤水;通过对皮拉里剖面石膏岩样品进行地球化学分析,揭示该地区古新世古盐湖演化过程中出现2个相对富钾峰值。在古盐湖演化过程中,由于多期次特提斯海水的侵入,凹陷内部阿尔塔时期发育了碎屑岩—巨厚层石膏岩—碎屑岩的沉积韵律,古盐湖卤水表现为淡—咸—淡的变化规律。伴随着阿尔塔时期4次大规模的海侵,石膏岩沉积从西昆仑山前扩展到麦盖提斜坡地带,海侵范围也逐渐扩大。在阿尔塔什组顶部发育中厚层灰岩,显示在阿尔塔什组沉积晚期,塔西南凹陷沉积环境从●湖相逐渐向浅海相环境演变。  相似文献   

10.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

11.
C. M. BELL 《Sedimentology》1989,36(4):651-663
The Codocedo Limestone Member is a thin but laterally persistent lacustrine sequence within the red beds of the Upper Jurassic-Lower Cretaceous Quebrada Monardes Formation, in the Atacama region of northern Chile. The thick succession of clastic terrigenous sediments of the Quebrada Monardes Formation was deposited in an arid to semi-arid environment. Sedimentary facies are indicative of deposition of aeolian dunes, alluvial fans and braided streams, playa-lake mudflats, and saline lakes and coastal lagoons. The strata accumulated in a N-S elongated extensional back-arc basin on the landward side of an active volcanic arc. The 3 m thick Codocedo Limestone Member marks striking facies changes within the Quebrada Monardes Formation. It is underlain by a thick sequence of conglomerates and sandstones, deposited on alluvial fans. The limestone itself is characterized by evaporite minerals and laterally continuous laminations, indicative of deposition by vertical accretion in a perennial saline lake. The overlying siltstones and fine sandstones contain geodes and gypsum pseudomorphs and were deposited on playa-lake mudflats. The limestone therefore represents a relatively short period of lacustrine deposition within an essentially terrigenous succession. The lake was possibly formed quite suddenly, for example by damming of the basin by a lava flow. Sedimentation in the perennial lake was predominantly cyclical. Seasonal planktonic algal blooms produced millimetre-scale laminations. Interbedded with these laminites are centimetre-scale beds of evaporitic gypsum, anhydrite and minor halite. The evaporite minerals have been largely replaced by calcite, chalcedony and quartz. The centimetre-scale cycles may have resulted from periodic freshwater input into the lake. After a period of about 3000 yr the lake dried up, to be replaced by extensive playa-lake mudflats. The Codocedo Limestone Member possibly formed a plane of detachment during an early Tertiary phase of E-W directed regional compression. The limestones and evaporites were folded and extensively brecciated. This deformation probably resulted from simple shear along the bedding plane of the relatively weak evaporite minerals prior to their replacement by calcite and quartz.  相似文献   

12.
During the Carboniferous Period the Yarrol and New England Orogens comprised an active depositional margin east of cratonised parts of Australia. Patterns of deposition within the orogens were probably controlled by dextral shear systems believed responsible for tectonism and the positions of the various depositional elements (volcanic chain, shelf, slope and basin, pull‐apart troughs and graben), and global changes in sea level. These patterns are illustrated by a series of non‐palin‐spastic palaeogeographic reconstructions.

In the Early Carboniferous, similar patterns of deposition existed within the western volcanic chain, marine shelf, and eastern slope and basin provinces of both orogens. Sediments were deposited in two cycles. They range from volcanic fluvial and marine sandstone to siltstone, mudstone and turbidites. Complex depositional patterns within shelfal regions are shown in detailed palaeogeographic reconstructions.

This uniform pattern changed during the latest Visean and Namurian, with the uplift of the New England Arch, subsidence of a non‐marine graben (Werrie Trough) to the west, and development of a new shelf in the east. The Werrie Trough received volcanics as well as fluvial and glacigene sediments, and the shelf marine sandstone and siltstone. The Yarrol Orogen was unaffected by tectonism but there was a change in provenance.

Late in the Carboniferous the Yarrol Orogen was restructured by the intrusion of granitoids into the former volcanic chain, and development of the Yarrol and North D'Aguilar Troughs as probable pull‐apart basins. In the New England Arch, deformation and metamorphism were followed by intrusion of S‐type granitoids. A comparable episode of deformation and metamorphism affected the southeastern part of the Yarrol Orogen at the end of the Carboniferous Period. This partial cratonisation of the mobile zone was a prelude to widespread basin formation during the Permian Period.  相似文献   

13.
Modern acid and neutral saline lakes in Western Australia are an excellent natural laboratory for testing how pH affects halite, and for developing criteria for distinguishing past acid saline waters from past neutral saline waters in the rock record. This study characterizes and compares physical, chemical and biological features in halite precipitated from acid (pH 1·7 to 4·2) and neutral (pH 6·8 to 7·3) saline lakes in southern Western Australia. Supplemental data include synthetic halite grown from acid and neutral saline solutions, as well as halite deposited in Permian acid lakes. Although physical processes of halite growth are not affected by pH, there are differences in the colour, accessory minerals, fluid inclusions and microfossils between acid and neutral halites. Acid lake halite commonly is yellow or orange in colour; neutral lake halites examined in this study are always snow white. Acid halites tend to contain abundant sulphate and iron oxide minerals, both as solid inclusions and as solids within fluid inclusions; neutral halites contain little, if any, sulphates and no iron oxides. Acid fluid inclusion freezing/melting behaviours include characteristics that differ from neutral fluid inclusion behaviours, such as lower eutectic temperatures, higher and wider temperature range of hydrohalite rims with a definable fuzzy border and more complex metastable phases. Acid halite contains 'hairy blobs', clusters of bacterial/archaeal/fungal remains and sulphate crystals, which are not found in halite from neutral lakes. This distinct assemblage of features characteristic of modern acid lake halites may serve as informal criteria for the recognition of past acid lake evaporites in the rock record.  相似文献   

14.
《Sedimentology》2018,65(2):335-359
Predominantly fine‐grained strata were deposited in the Smith Bank Formation (Early Triassic) in the Central North Sea area of the Northern Permian Basin. Previously regarded as monotonous red claystone, examination of continuous core reveals abundant stratification, significant variation in colour, siltstone as the prevalent average grain size, and claystone is rare. Loessite occurs beyond the north‐western lacustrine margin, and aerosol dust has inundated clay pellets derived from aeolian reworking of the desiccated lake floor. The loessite has limited evidence of pluvial reworking but rare fossil roots testify to sufficient moisture to sustain plants. Loessite has not previously been differentiated successfully from other fine‐grained strata in the subsurface, but this study defines the presence of random grain‐fabric orientation as an intrinsic unequivocal characteristic of loessite that formed during air‐fall deposition of aerosol dust. Comparison with outcrop data verifies the utility of grain fabric to differentiate loessite. Tosudite, an aluminous di‐octahedral regularly ordered mixed‐layer chlorite/smectite, which is rare in sedimentary rock, forms a significant proportion (10 to 21%) of the clay mineral fraction of loessite along with a similar quantity of kaolinite. In all other samples, only illite and chlorite are identified, which is typical of fine‐grained Triassic strata. In a location, close to the southern lake margin, lacustrine strata are characterized by fining‐upward couplets of very fine‐grained sandstone into siltstone and mudstone, with occasional desiccated surfaces. Small sand injections and associated sand extrusions are common and indicate periodic fluidization of sand. Precise stratigraphic location of the Smith Bank Formation is problematic because of extremely sparse fossil preservation; however, there is no sedimentological evidence for a period of hyperaridity known from the early Olenekian in continental Europe, which may mean that the North Permian Basin was never hyperarid or that the Smith Bank Formation is restricted to the Induan.  相似文献   

15.
Sedimentary successions of non‐marine basins can be considered in terms of accommodation space and sedimentary supply changes. Changes in accommodation space controlling the large‐scale architecture of non‐marine basins are different in areas with high and low sedimentary supplies. Uplift of intrabasinal monoclines and anticlines reduced the available accommodation space, resulting in changes in both the geometry of the depositional sequences and the large‐scale architecture of fluvial, mudflat and shallow carbonate lacustrine deposits. Main drainage fluvial systems record areas with a high sedimentary supply, while mudflats and shallow fluctuating lakes represent areas that received less sediment. Two end members in the large‐scale architecture of main drainage fluvial system in the Almazán Basin (Spain) are: (i) ribbon‐shaped channel fills with low interconnectivity which pass laterally into mudflats dominated by mudstones and evaporites and into palustrine and shallow carbonate lacustrine deposits (mainly in the A2 depositional sequence); and (ii) sheet‐like channel fills with high interconnectivity laterally correlated with stacked calcretes in the marginal mudflats (in the upper part of A3). Ribbon‐shaped channel fills formed in areas of high accommodation space and sheet‐like channel fills formed in areas of reduced accommodation space.  相似文献   

16.
The 400 m of Blomidon redbeds accumulated in a semi-arid rift valley in the subtropics. At St Mary's Bay, these redbeds are 64% sandy mudstone (playa mudflats), 25% graded beds (sandflats at the toes of alluvial fans), 10% fissile claystone (playa lakes), and 1% channel sandstone (stream channels). Flash floods in mountains south of the valley flowed down alluvial fans to spread out to the north-east as sheet flows on sandflats and playa mudflats. Deceleration of the sheet flows deposited graded beds 2–83 cm in thickness on the sandflats and thin layers of mud on the playas. Nine sequences, consisting of arrangements of six lithologies, compose 90% of the graded beds. In order of decreasing abundance, these are: ripple cross-laminated siltstone → horizontally laminated mudstone; fining-upward, ripple cross-laminated siltstone; ripple cross-laminated sandstone → horizontally laminated mudstone; cross-bedded sandstone horizontally laminated mudstone; ripple cross-laminated sandstone → ripple cross-laminated siltstone; rippledrift cross-laminated siltstone horizontally laminated mudstone; fining-upward, ripple-drift cross-laminated siltstone; cross-bedded sandstone → ripple cross-laminated siltstone; and cross-bedded sandstone → ripple cross-laminated siltstone → horizontally laminated mudstone. The sheet flows, perhaps up to 1 m in depth, had a high concentration of suspended load. Deposition was dominantly during lower flow regime conditions and moderate to rapid flow deceleration. There are 32 thinning and fining-up cycles where a sandflat package of graded beds is transitionally followed by a playa package of sandy mudstone. The cycles range in thickness from 1·3 to 13·3 m, averaging 4·6 m. Each cycle is initiated by avulsion to a new active channel network on a fan. Gradual abandonment of the channel network produces the thinning and fining-up cycle. The cycles are grouped in three 60–70 m fining-up megacycles. Upwards within each megacycle, the packages of sandy mudstone compose a progressively larger proportion of the cycles. Each megacycle evidently was initiated by a brief period of tectonic movement on the border faults that produced greater relief of the highlands relative to the valley floor. Subsequent erosion gradually lowered the relief to yield a fining-up megacycle.  相似文献   

17.
金强  查明 《地质科学》2000,35(4):465-473
许多人认为柴达木盆地第三纪盐湖环境不利于形成有机质丰度高的优质生油岩.作者通过柴达木盆地西部下干柴沟组、上干柴沟组(E3和N1)蒸发岩沉积成因和生油岩有机质富集状态的研究,发现优质生油岩(TOC>1%,干酪根类型为Ⅰ型或Ⅱ1型)恰好发育在石膏、芒硝和岩盐最发育的构造部位和层位,提出了一种"大咸盆套小盐湖"的蒸发岩与生油岩共生的沉积模式,认为第三纪盐湖的水体深浅既控制了蒸发岩沉积和分布,又控制了一般生油岩和优质生油岩的形成,就该盐湖有机质分布规律进行了理论解释.  相似文献   

18.
The widespread and dissected nature of the Angolan gypsiferous salt residuals offers a uniquely detailed view of the lateral and vertical relations inherent to secondary evaporite textures, which typify exhumed salt masses worldwide. Such secondary textures are sometimes misinterpreted as primary evaporite textures. Thin, metre‐scale and patchy, dome‐like gypsum accumulations are well‐exposed within strongly incised present‐day river valleys along the eastern margin of the Namibe and Benguela basins (south‐west Angola). These sections are time equivalent to the main basinward subsurface evaporites (Aptian Loeme Formation) which mostly consist of halite. The gypsum (here called the Bambata Formation) is interpreted to represent the final residual product of fractional dissolution and recrystallization of the halite mass that occurred during Late Cretaceous margin uplift and continues today. This halite underwent multiple episodes of diagenetic alteration between its deposition and its final exhumation, leading to the formation of various secondary gypsum fabrics and solution‐related karst and breccia textures that typify the current evaporite outcrop. Four different diagenetic gypsum fabrics are defined: thinly bedded alabastrine, nodular alabastrine, displacive selenite rosettes and fibrous satin‐spar gypsum. Current arid conditions are responsible for a thin weathered crust developed at the top of the outcropping gypsum, but the fabrics in the main core of the current at‐surface evaporite unit mostly formed during the telogenetic stage of uplift prior to complete subaerial exposure. Alteration occurred as various dissolving and rehydrating saline minerals encountered shallow aquifers in the active phreatic and vadose zones. Geomorphological and petrographic analyses, mostly based on the cross‐cutting relations and crystallographic patterns in the outcrop, are used to propose a sequence of formation of these different fabrics.  相似文献   

19.
Chemical sediments are common and diverse in the c. 3500 Myr old North Pole chert-barite unit in the Warrawoona Group, Western Australia. Although almost all original minerals were replaced during hydrothermal alteration, metamorphism and deformation, pseudomorphic relics of sedimentary and diagenetic textures and structures show that at least six lithofacies were partly or wholly chemical in origin. These contained five main chemical sedimentary components: primary carbonate mud, diagenetic carbonate crystals, primary sulphate crystals, diagenetic sulphate crystals and diagenetic sulphate nodules. All show a wide range of characteristics consistent only with a marine evaporative origin. Diagenetic carbonate and sulphate crystals, once ferroan dolomite and gypsum, were precipitated within volcanogenic lutites high on littoral mudflats. The other evaporative phases were apparently deposited behind a barrier bar composed of stranded pumice rafts. Primary sulphate crystals, once gypsum and now barite, were precipitated in semi-permanent pools immediately behind the bar. Primary carbonate mud, originally calcitic or aragonitic but now silicified, was deposited in nearby channels and on surrounding mudflats. Within these sediments, diagenetic carbonate crystals (formerly ferroan dolomite) and diagenetic sulphate nodules and crystals (once gypsum) grew during later desiccation. The existence of these evaporites, and more like them in the sediments of other Early Archaean cratons, suggests that shallow marine and terrestrial conditions prevailed over a small but significant portion of the early Earth, contrary to some models of global tectonic evolution. Their overall similarity with more recent evaporitic deposits indicates that there was greater conformity between conditions in modern and primeval sea-shore environments than might be expected, given the great age difference. The attitude implicit in many accounts of Earth's early history, that evaporites were either not deposited or not preserved in Archaean sediments, thus seems to be incorrect.  相似文献   

20.
Sichuan Basin is one of the most important marine–salt forming basins in China. The Simian and Triassic have a large number of evaporites. The Triassic strata have found a large amount of polyhalite and potassium-rich brine. However, no soluble potassium salt deposit were found. In this study, the halite in well Changping 3 which is located at the eastern part of the Sichuan basin was studied using the characteristics, hydrogen and oxygen isotopes of the fluid inclusion in halite to reconstruct the paleoenvironment. The salt rocks in well Changping 3 can be divided into two types: grey salt rock and orange salt rock. The result shows that the isotopic composition of the halite fluid inclusion is distinct from the global precipitation line reflecting that the salt formation process is under strong evaporation conditions and the climate is extremely dry. At the same time, compared with the hydrogen and oxygen isotopes of brine in the Sichuan Basin and the hydrous isotope composition of the inclusions in the salt inclusions of other areas in China, it is shown that the evaporation depth of the ancient seawater in the Sichuan Basin was high and reached the precipitation of potassium and magnesium stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号