首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—?Two large-diameter boreholes have been excavated vertically from the floor of a tunnel at the Äspö Hard Rock Laboratory, Sweden. The two deposition holes will have simulated high-level radioactive waste canisters installed in them in an experiment undertaken to test the retrievability of waste from a proposed repository. Induced seismicity and other acoustic monitoring techniques have been used to investigate the Excavation Damaged Zone (EDZ) around the two holes. High-frequency acoustic emission (AE) monitoring has been used to delineate regions of stress-induced microfracturing on the millimetre scale. This has been shown to locate in clusters around the perimeter of the deposition hole at azimuths orthogonal to the far-field maximum principal stress. Three-dimensional velocity surveys have been conducted along ray paths that pass through the damaged region and through a stress-disturbed zone around the excavation. Induced microfracturing and stress disturbance have been observed as sharp decreases in velocity as the excavation proceeds through the rock mass. The combination of the high-resolution velocity measurements and the AE source locations has allowed the linking of the velocity measurements to a volume of excavation damaged rock. This has provided a quantitative estimate of the effect of the EDZ on the rock mass.  相似文献   

2.
The New Jersey Department of Environmental Protection's Technical Regulations require the horizontal and vertical delineation of contamination. Monitor wells screened at increasingly deeper intervals are used to delineate vertical contamination. In New Jersey, the open interval in a bedrock well cannot exceed 7.6 m. Since contamination has been found at depths as great as 91.4 m in a production well in the study area, it would be prohibitively expensive to install monitor wells with 7.6 m open holes at ever-increasing depths until no contamination was found. Isolation of discrete zones in boreholes using pneumatic packers was implemented at a site in north central New Jersey. Ground water samples were collected from selected 6.1 m sections of boreholes drilled into fractured bedrock at three locations on the property and one offsite location. The ground water samples were analyzed in a field laboratory. The analytical results were used to determine the vertical extent of gasoline-related compounds dissolved in the ground water on the property and offsite. These compounds include benzene, ethylbenzene, methyl tertiary butyl ether, toluene, and xylenes. The four boreholes were converted into bedrock monitor wells. The intake interval for each of the wells was selected through evaluation of the vertical distribution of contaminants as determined from analytical results obtained from a field laboratory located onsite. Three wells are used for the recovery of contaminated ground water. The recovered water will be treated at the onsite air-stripping unit. The fourth well is used to chemically and hydraulically monitor the progress of the ground water recovery program.  相似文献   

3.
Magnetic resonance sounding applied to aquifer characterization   总被引:3,自引:0,他引:3  
Magnetic resonance sounding (MRS) is distinguished from other geophysical tools used for ground water investigation by the fact that it measures a magnetic resonance signal generated directly from subsurface water molecules. An alternating current pulse energizes a wire loop on the ground surface and the MRS signal is generated; subsurface water is indicated, with a high degree of reliability, by nonzero amplitude readings. Measurements with varied pulse magnitudes then reveal the depth and thickness of water saturated layers. The hydraulic conductivity of aquifers can also be estimated using boreholes for calibration. MRS can be used for both predicting the yield of water supply wells and for interpolation between boreholes, thereby reducing the number of holes required for hydrogeological modeling. An example of the practical application of MRS combined with two-dimensional electrical imaging, in the Kerbernez and Kerien catchments area of France, demonstrates the efficiency of the technique.  相似文献   

4.
A three-dimensional seismometer array was installed in the Chiba Experiment Station of the Institute of Industrial Science, University of Tokyo in 1982. The array system consists of 44 three-component accelerometers densely placed both on the ground surface and in boreholes. A complementary system for the measurement of ground and buried pipe strains was also installed at the same site. The array system has been successfully in operation, and more than 160 earthquakes have been recorded. Considering a wide use of these seismograms, the Chiba array database has recently been created comprising twenty-seven major events. This paper describes the Chiba array system and its strong motion database. Results of engineering analysis using the selected records are also presented.  相似文献   

5.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

6.
In contaminant hydrogeology, investigations at fractured rock sites are typically undertaken to improve understanding of the fracture networks and associated groundwater flow that govern past and/or future contaminant transport. Conventional hydrogeologic, geophysical, and hydrophysical techniques used to develop a conceptual model are often implemented in open boreholes under conditions of cross-connected flow. A new approach using high-resolution temperature (±0.001°C) profiles measured within static water columns of boreholes sealed using continuous, water-inflated, flexible liners (FLUTe™) identifies hydraulically active fractures under ambient (natural) groundwater flow conditions. The value of this approach is assessed by comparisons of temperature profiles from holes (100 to 200 m deep) with and without liners at four contaminated sites with distinctly different hydrogeologic conditions. The results from the lined holes consistently show many more hydraulically active fractures than the open-hole profiles, in which the influence of vertical flow through the borehole between a few fractures masks important intermediary flow zones. Temperature measurements in temporarily sealed boreholes not only improve the sensitivity and accuracy of identifying hydraulically active fractures under ambient conditions but also offer new insights regarding previously unresolvable flow distributions in fractured rock systems, while leaving the borehole available for other forms of testing and monitoring device installation.  相似文献   

7.
Yuan  Wei  Liu  Shangge  Wang  Wei  Su  Xuebin  Li  Zonghong  Li  Jiaxin  Wen  Lei  Chang  Jiangfang  Sun  Xiaoyun 《地震工程与工程振动(英文版)》2019,18(4):735-746

With the application of electronic detonators, millisecond blasting is regarded as a significant promising approach to improve the rock fragmentation in deep rock blasting. Thus, it is necessary to investigate the fracturing mechanisms of short-delay blasting. In this work, a rectangle model with two circle boreholes is modeled as a particles assembly based on the discrete element method to simulate the shock wave interactions induced by millisecond blasting. The rectangle model has a size of 12 × 6 m (L × W) and two blast holes have the same diameter of 12 cm. The shock waves are simplified as time-varying forces applied at the particles of walls of the two boreholes. Among a series of numerical tests in this study, the spacing between two adjacent boreholes and delay time of millisecond blasting are considered as two primary variables, and the decoupling charge with a coefficient of 1.5 is taken into account in each case. The results show that stress superposition is not a key factor for improving rock fragmentation (tensile stress interactions rather than compressive stress superposition could affect the generation of cracks), whereas collision actions from isolated particles or particles with weakened constraints play a crucial role in creating the fracture network. The delay time has an influence on causing cracks in rock blasting, however, whether it works heavily depends on the distance between the two holes.

  相似文献   

8.
Resistivity in horizontal boreholes can give useful detailed information about the geological conditions for construction in rock, i.e. in front of a tunnel bore machine. This paper is an attempt to identify a suitable methodology for an effective measuring routine for this type of geophysical measurements under actual construction site conditions.Prior to any measurements numerical modelling was done in order to evaluate the resolution of different electrode arrays. Four different arrays were tested; dipole–pole, cross-hole dipole–dipole, cross-hole pole–tripole and multiple gradient array. Additionally the resolution of a combination of cross-hole dipole–dipole and multiple gradient was assessed. The 2D sensitivity patterns for various arrangements of the cross-hole dipole–dipole and multiple gradient array were examined. The sensitivity towards inaccurate borehole geometry and the influence of water in the boreholes were also investigated. Based on the model study the cross-hole dipole–dipole array, multiple gradient array and a combination of these were found to give the best result and therefore were used for test measurements in horizontal boreholes. The boreholes were 28.5 m long and drilled 6.5 m apart. Prototypes of semi-rigid borehole cables made it possible to insert multi electrode cables in an efficient way, allowing fast measurement routines. These measurements were then studied to determine their accuracy and applicability. The results showed a high resistivity rock mass at the site. A transition from high resistivity to slightly lower resistivity coincides well with a change in lithology from gneiss-granite to gneiss. It is likely that the shotcrete on the tunnel wall is seen as a low resistivity zone.The measurements are a valuable tool, but further development of the cables and streamlining of measuring routines have to be performed before the resistivity tomography can be used routinely in pilot holes during construction in rocks.  相似文献   

9.
《Journal of Geodynamics》2010,49(3-5):126-131
It is well known, that high resolution borehole tiltmeters are able to observe deformations, caused by hydrological variations. The quantitative coherence is often unexplained, especially if the sources of deformation can be based on both natural as well as man-made hydrological variations. Since 1999 tilt observations have been taken at the Geodynamic Observatory Moxa in Thuringia/Germany. In two 50 m and one 100 m deep boreholes the ASKANIA tiltmeters are installed. The high quality of the recorded tilt data can be proved by the analysis of well known geodynamic signals like the tides of the solid Earth and the free modes of the Earth. Here we focus on investigations of induced tilt signals caused by pore pressure changes due to precipitation and/or ground water level changes and, in addition, on man-made induced pore pressure variations. The correlation of natural ground water level changes with the observed tilt data can be shown by different events of precipitation and snow melting. However, also the load effect of a big truck yields a small elastic deformation which is clearly detectable in the ground water level recording. The correlated tilt effect is discussed regarding changes of the tilt amplitude and the orientation of the induced pendulum tip movement during the load phase.  相似文献   

10.
Benzene, toluene and xylenes (BTX) were detected in ground water during a contaminant hydrogeological investigation of a landfill site. The landfill site was situated on approximately 10m (33 ft) of clay and glacial till overburden soils, which were underlain by a shaly limestone bedrock. The top part of the bedrock was the regional aquifer in the study area. Initial thoughts were that the landfill was the source of the BTX. However, the BTX was detected in ground water a considerable distance from the known extent of the leachate plume. Subsequent detailed analysis of rock cores showed the BTX could be leached from bituminous layers of shale that were interbedded in limestone. Rock core testing included gas chromatograph (GC) analysis of organic free reagent water used for leaching tests, flame ionization detection on a solvent used for leaching tests and thermal desorption analysis of the solid rock. The naturally occurring BTX, along with the presence of brackish ground water in the shaly bedrock, made it difficult to identify ground water contamination emanating from the landfill. Thus, the presence of BTX should not be considered definitive evidence of ground water contamination in certain sedimentary rock aquifers.  相似文献   

11.
A New Multilevel Ground Water Monitoring System Using Multichannel Tubing   总被引:5,自引:0,他引:5  
A new multilevel ground water monitoring system has been developed that uses custom-extruded flexible 1.6-inch (4.1 cm) outside-diameter (O.D.) multichannel HOPE tubing (referred to as Continuous Multichannel Tubing or CMT) to monitor as many as seven discrete zones within a single borehole in either unconsolidated sediments or bedrock. Prior to inserting the tubing in the borehole, ports are created that allow ground water to enter six outer pie-shaped channels (nominal diameter = 0.5 inch [1.3 cm]) and a central hexagonal center channel (nominal diameter = 0.4 inch [1 cm]) at different depths, facilitating the measurement of depth-discrete piezometric heads and the collection of depth-discrete ground water samples. Sand packs and annular seals between the various monitored zones can be installed using conventional tremie methods. Alternatively, bentonite packers and prepacked sand packs have been developed that are attached to the tubing at the ground surface, facilitating precise positioning of annular seals and sand packs. Inflatable rubber packers for permanent or temporary installations in bedrock aquifers are currently undergoing site trials. Hydraulic heads are measured with conventional water-level meters or electronic pressure transducers to generate vertical profiles of hydraulic head. Ground water samples are collected using peristaltic pumps, small-diameter bailers, inertial lift pumps, or small-diameter canister samplers. For monitoring hydrophobic organic compounds, the CMT tubing is susceptible to both positive and negative biases caused by sorption, desorption, and diffusion. These biases can be minimized by: (1) purging the channels prior to sampling, (2) collecting samples from separate 0.25-inch (0.64 cm) O.D. Teflon sampling tubing inserted to the bottom of each sampling channel, or (3) collecting the samples downhole using sampling devices positioned next to the intake ports. More than 1000 CMT multilevel wells have been installed in North America and Europe to depths up to 260 feet (79 m) below ground surface. These wells have been installed in boreholes created in unconsolidated sediments and bedrock using a wide range of drilling equipment, including sonic, air rotary, diamond-bit coring, hollow-stem auger, and direct push. This paper presents a discussion of three field trials of the system, demonstrating its versatility and illustrating the type of depth-discrete data that can be collected with the system.  相似文献   

12.
The reliability of filter pack and annular seal emplacements, and the degree of integrity of installed seals, are two of the most important factors to be considered when both installing and later utilizing ground water monitoring wells.
Numerous, and often costly, problems of using existing methods of installing filter packs and annular seals during the construction of ground water monitoring wells have led to the development of a technique of installing these monitoring well components using a dry injection system.
The dry injection system has been used to construct monitoring wells in extremely complex overburden/bedrock environments with a variety of drilling techniques. The system has shown that a high degree of reliability in the, construction of monitoring wells and greater confidence in obtaining representative ground water samples can be achieved over existing methods of filter pack and annular seal emplacement. The system has also been more cost effective than existing methods, especially for deep boreholes and multilevel monitoring system installations.  相似文献   

13.
Electrical Leak Detection System for Landfill Liners: A Case History   总被引:9,自引:0,他引:9  
As landfill specifications become more stringent in the United Kingdom, the development of increasingly sophisticated monitoring methods is necessary to meet environmental protection goals. This case history describes the development of a 2-million-cubic-meter-capacity landfill located in a sandstone quarry and 1 km from a public water supply borehole, where the sensitivity of the site to ground water contamination and the proximity to a public water supply borehole are particular issues.
The landfill design incorporated a more sensitive environmental monitoring system, using a geophysical technique. The monitoring system comprises a permanent grid of electrodes installed beneath the landfill, connected by multicore cable to a computer-controlled earth resistance meter and switching unit in the site weighbridge. It was designed to detect holes in the landfill liner prior to and after covering with waste and to monitor the migration of contaminants beneath the landfill before they reach the perimeter observation boreholes, should leakage occur.
Such monitoring can enable the integrity of the landfill to be routinely reviewed; holes can be repaired if they are readily accessible and, if not, monitoring provides an early warning to enable the implementation of any additional monitoring or corrective action, based on the environmental risk posed by the site.
The system was first used as a quality assurance test once the landfill liner, which covered an area of 3 hectares, was installed. The system proved sensitive, detecting a hole consisting of two narrow knife cuts. Such sensitivity allows a high degree of confidence to be placed upon the integrity of the liner resulting in a significant contribution to public reassurance. The landfill is now operational, and monitoring using the geophysical system will be undertaken on a monthly basis for the first year, with the frequency of monitoring reviewed thereafter.  相似文献   

14.
Experimental evidence for an ascending microflow of geogas in the ground   总被引:2,自引:0,他引:2  
A microflow of free ascending gas has been observed in 26 out of 30 tested boreholes at three different sites. The flow rates vary between 60 × 10−4 and 4 cm3/min m2 horizontally projected borehole area. Sampling has been made in ground boreholes as well as in holes drilled downwards from the lowest levels in two mines. The composition of the gas varies considerably. The main components of the gas are nitrogen, argon, oxygen and methane. Traces of heavier hydrocarbons are observed. At the site of the ground holes, only traces of methane are observed. In all sampled holes the existence of free oxygen is observed. The nitrogen/argon quotient is close to the atmospheric quotient in all sampled holes, indicating a partly atmospheric origin of the gas. The existence of methane and traces of heavier hydrocarbons indicates the existence of a second source.  相似文献   

15.
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.  相似文献   

16.
Groundwater flow through coarse blocky landforms contributes to streamflow in mountain watersheds, yet its role in the alpine hydrologic cycle has received relatively little attention. This study examines the internal structure and hydrogeological characteristics of an inactive rock glacier in the Canadian Rockies using geophysical imaging techniques, analysis of the discharge hydrograph of the spring draining the rock glacier, and chemical and stable isotopic compositions of source waters. The results show that the coarse blocky sediments forming the rock glacier allow the rapid infiltration of snowmelt and rain water to an unconfined aquifer above the bedrock surface. The water flowing through the aquifer is eventually routed via an internal channel parallel to the front of the rock glacier to a spring, which provides baseflow to a headwater stream designated as a critical habitat for an at‐risk cold‐water fish species. Discharge from the rock glacier spring contributes up to 50% of basin streamflow during summer baseflow periods and up to 100% of basin streamflow over winter, despite draining less than 20% of the watershed area. The rock glacier contains patches of ground ice even though it may have been inactive for thousands of years, suggesting the resiliency of the ground thermal regime under a warming climate.  相似文献   

17.
Results are presented of a series of cross-hole acoustic measurements made between four horizontal boreholes drilled from a near-surface underground opening situated in a basaltic rock mass. The objectives of the program were to assess the extent of blast damage around the opening, and to evaluate the rock mass characteristics and their spatial variation around the opening. The acoustic velocity and attenuation data are indicative of an anisotropic, jointed rock mass, with a greater intensity of jointing along travel paths in the horizontal than the vertical direction. Low acoustic P- and S-velocities are indicative of blast damage and of zones of intense jointing or fracturing. In this case blast damage extends to approximately 1.5 m from the face. Attenuation data appear to be less sensitive in distinguishing between the blast-damaged zone and intense vertical jointing and fracturing in the virgin rock mass. Taken together with field data, laboratory measurements of P- and S-wave velocities on intact core samples suggest that the rock mass is probably water saturated.  相似文献   

18.
Summary
A ground-water study carried out in the Serowe area of eastern Botswana between 1985–1988 has provided the opportunity to evaluate the role of a multiparameter low-level airborne geophysical survey in a hydrogeological investigation. The survey included magnetic, VLF (very low frequency), and coaxial EM (electromagnetic) measurements. In total, 7,500 line kilometers were flown over an area of 3,300 km2 with a nominal ground clearance of 20 m and a line spacing of 400 m.
The main aquifer, the Ntane Sandstone Formation (Karoo age), is confined between mudstones below and basalt above, and is broken into a series of graben and horst structures by numerous E-W striking faults. All bedrock, however, is completely masked by a 20–60 m thick overburden of sands, calcretes, silcretes, and sandstones known collectively as the Kalahari beds.
Airborne magnetic and VLF geophysical surveys have been used to penetrate this masking cover. Images and stacked profiles obtained from the survey revealed structural and geological features of major hydrogeological significance. This provided the information necessary for the formulation of a conceptual model.
The results helped guide the subsequent exploration drilling program in an efficient and effective manner, cutting down the need for extensive ground surveys. The investigation confirmed the availability of a 35,000 m3/day resource, sustainable for a 25-year period. Highest yields were obtained from fracture zones associated with VLF anomalies. Potential wellfields were identified in confined sections of the aquifer, with production boreholes to be sited, where possible, on fractures associated with VLF anomalies.  相似文献   

19.
高锡铭 《地震学报》1984,6(3):304-312
水库蓄水后,水体质量荷载引起地基岩石介质产生静力学形变效应.发生地震的水库,由于震源区岩石介质扩容,也会引起地基岩石介质的形变.本文同时考虑了这两种效应.水体质量荷载的静力学形变总效应包括:荷载引起的地基岩石介质的静态弹性形变,质量引起的重力等位面形变以及静态弹性形变所引起的重力等位面形变.岩石介质扩容效应在一定阶段会引起地基岩石介质的膨胀隆起,这种隆起形变同样也引起重力场变化.采用上述模型分析了丹江水库的水准测量成果,确定了该地区地基岩石介质的 Lame 常数,分析了地面垂直形变与地震的关系,从而认为使用该模型分析蓄水后库区的地面的垂直形变,可以为预报水库区地震提取必要的信息.   相似文献   

20.
The finite and infinite element coupling system is used to study the effects of canyon topography and geological conditions on strong ground motion. The system is first applied to a semi-cylindrical shaped canyon using SH wave propagation to verify its accuracy. It is concluded that different topography conditions may have important effects on the ground motions along the canyon. The geological conditions, by which we mean different softening of weathered strata of the canyon surface, will have significantly amplified effects on the free field motions. This fact suggests that a deep weathered rock excavation of arch dam abutments for stability purposes will also benefit earthquake resistance of the dam due to the reduction of ground motions of the sound rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号