首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsars have been recognized to be normal neutron stars, but sometimes have been argued to be quark stars. Submillisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. We focus on the formation of such submillisecond pulsars in this paper. A new approach to the formation of a submillisecond pulsar (quark star) by means of the accretion-induced collapse (AIC) of a white dwarf is investigated. Under this AIC process, we found that: (i) almost all newborn quark stars could have an initial spin period of ∼0.1 ms; (ii) nascent quark stars (even with a low mass) have a sufficiently high spin-down luminosity and satisfy the conditions for pair production and sparking process and appear as submillisecond radio pulsars; (iii) in most cases, the times of newborn quark stars in the phase with spin period <1 (or <0.5) ms are long enough for the stars to be detected.
As a comparison, an accretion spin-up process (for both neutron and quark stars) is also investigated. It is found that quark stars formed through the AIC process can have shorter periods (≤0.5 ms), whereas the periods of neutron stars formed in accretion spin-up processes must be longer than 0.5 ms. Thus, if a pulsar with a period shorter than 0.5 ms is identified in the future, it could be a quark star.  相似文献   

2.
We study the effect of random extra-galactic magnetic fields on the propagation of protons of energy larger than 1019 eV. We show that for reasonable field values (in the 100 nG range) the transition between diffusive and ballistic regimes occurs in the same energy range as the GZK cutoff (a few 1019 eV). The usual interpretation of the flux reduction above the GZK energy in terms of a sudden reduction of the visible horizon is modified. Moreover, since the size of the diffusion sphere of a continuous source of cosmic rays is of the order of 10 Mpc, the local structure of the Universe and, therefore, of potential local astrophysical sources plays a dominant role in the expected spectrum. Under reasonable assumptions on the sources configurations the expected GZK cutoff is reduced.  相似文献   

3.
吴飞  徐仁新 《天文学进展》2003,21(2):139-151
极高能宇宙线是能量高于≈10^19 eV的带电或中性的宇宙线粒子。其成分和形成机制的研究是宇宙线物理的重要内容之一,对高能天体物理、粒子物理和宇宙学等相关学科具有重要意义,而且很可能是揭示某些新的基本物理规律的突破点。围绕GZK疑难,重点综述了极高能宇宙线的观测和理论研究现状,对其研究前景作了展望。  相似文献   

4.
The accretion-induced collapse(AIC) scenario was proposed 40 years ago as an evolutionary end state of oxygen-neon white dwarfs(ONe WDs), linking them to the formation of neutron star(NS) systems.However, there has been no direct detection of any AIC event so far, even though there exists a lot of indirect observational evidence. Meanwhile, the evolutionary pathways resulting in NS formation through AIC are still not thoroughly investigated. In this article, we review recent studies on the two classic progenitor models of AIC events, i.e., the single-degenerate model(including the ONe WD+MS/RG/He star channels and the CO WD+He star channel) and the double-degenerate model(including the double CO WD channel,the double ONe WD channel and the ONe WD+CO WD channel). Recent progress on these progenitor models is reviewed, including the evolutionary scenarios leading to AIC events, the initial parameter space for producing AIC events and the related objects(e.g., the pre-AIC systems and the post-AIC systems).For the single-degenerate model, the pre-AIC systems(i.e., the progenitor systems of AIC events) could potentially be identified as supersoft X-ray sources, symbiotics and cataclysmic variables(such as classical novae, recurrent novae, Ne novae and He novae) in the observations, whereas the post-AIC systems(i.e.,NS systems) could potentially be identified as low-/intermediate-mass X-ray binaries, and the resulting low-/intermediate-mass binary pulsars, most notably millisecond pulsars. For the double-degenerate model,the pre-AIC systems are close double WDs with short orbital periods, whereas the post-AIC systems are single isolated NSs that may correspond to a specific kind of NS with peculiar properties. We also review the predicted rates of AIC events, the mass distribution of NSs produced via AIC and the gravitational wave(GW) signals from double WDs that are potential GW sources in the Galaxy in the context of future spacebased GW detectors, such as LISA, TianQin, Taiji, etc. Recent theoretical and observational constraints on the detection of AIC events are summarized. In order to confirm the existence of the AIC process, and resolve this long-term issue presented by current stellar evolution theories, more numerical simulations and observational identifications are required.  相似文献   

5.
The X-ray activity of anomalous X-ray pulsars and soft γ-ray repeaters may result from the heating of their magnetic corona by direct currents dissipated by magnetic reconnection. We investigate the possibility that X-ray flares and bursts observed from anomalous X-ray pulsars and soft γ-ray repeaters result from magnetospheric reconnection events initiated by development of the tearing mode in magnetically dominated relativistic plasma. We formulate equations of resistive force-free electrodynamics, discuss the relation of the latter to ideal electrodynamics, and give examples of both ideal and resistive equilibria. Resistive force-free current layers are unstable towards the development of small-scale current sheets where resistive effects become important. Thin current sheets are found to be unstable due to the development of the resistive force-free tearing mode. The growth rate of the tearing mode is intermediate between the short Alfvén time-scale  τA  and a long resistive time-scale  τR: Γ∼ 1/(τRτA)1/2  , similar to the case of non-relativistic non-force-free plasma. We propose that growth of the tearing mode is related to the typical rise time of flares, ∼10 ms. Finally, we discuss how reconnection may explain other magnetar phenomena and ways to test the model.  相似文献   

6.
The sources of ultrahigh energy cosmic rays (UHECRs, E >1018 eV) are still unknown, mainly due to the loss of the direction to the source after the deflection of cosmic rays’ (CRs) trajectories in the galactic and extragalactic magnetic fields. With the increase in CR energy (rigidity), the influence of the magnetic field weakens; therefore, the most promising approach is to search for the sources of events with the highest energy. In our work, we expand the existing UHECR (E > 1020 eV) sample from 33 to 42 events by calibrating the AUGER events. The sample is characterized by the presence of an event triplet in a circle of radius 3°. The highest-energy event is still the shower (E = 3.2 × 1020 eV) detected with the Fly’s Eye fluorescent detector (FE-event) in 1993. The possible sources of the triplet and the FE-event are analyzed. Taking into account the deflection of CR trajectories in the extragalactic and galactic magnetic fields, it is shown that transient sources of the FE-event and the triplet may be galaxies with active star formation, where CRs are accelerated by newborn millisecond pulsars. Among the galactic sources, the potential candidates are young pulsars that might have had millisecond periods at birth and giant magnetar flares.  相似文献   

7.
Ultrahigh energy cosmic rays (UHECRs, E > 1018 eV) from extragalactic sources deviate in the galactic and intergalactic magnetic fields, which explains the diffusive character of their propagation, the isotropization of their total flux, and the absence of UHECR clusters associated with individual sources. Extremely high energy cosmic rays (E > 1019.7 eV) are scattered mainly in localized magnetized structures, such as galaxy clusters, filaments, etc., with a mean free path of tens of megaparsecs; therefore, in the case of nearby transient sources, a substantial contribution to the observed flux is expected from unscattered and weakly scattered particles, which may be a decisive factor in the identification of these sources. We propose a method for calculating the time evolution of the UHECR energy spectra based on analytical solutions of the transport equation with the explicit determination of the contributions from scattered and unscattered particles. As examples, we consider the cases of transient activity of the nearest active galactic nucleus, Centaurus A, and the acceleration of UHECRs by a young millisecond pulsar.  相似文献   

8.
We consider the contribution to the Galactic diffuse γ-ray emission from unresolved γ-ray pulsars. Based on the thick outer gap model, Monte Carlo methods are used to simulate the properties (period, distance, magnetic field, etc.) of the Galactic population of rotation-powered pulsars the gamma-ray flux of which is lower than the threshold sensitivity of the EGRET detector on the Compton Gamma-Ray Observatory . Furthermore, the contribution to the Galactic diffuse γ-ray spectrum from the unresolved γ-ray pulsars is calculated. Our results indicate that the unresolved γ-ray pulsars contribute ∼5 to ∼10 per cent to the measured Galactic diffuse γ-ray emission if the birth rate of neutron stars in the Galaxy is 1 to 2 per century, and that these pulsars contribute significantly to the observed Galactic diffuse γ-ray emission above 1 GeV. Comparing the model spectrum with the observed spectrum, we show that the unresolved γ-ray pulsars contribute very little to the diffuse emission at lower energies but can account for ∼50 per cent of the observed spectrum above 1 GeV if the product of the birth rate of neutron stars and the γ-ray beaming fraction is about unity. Such a large pulsar contribution can explain the difference (∼60 per cent) between the intensity of the Galactic diffuse emission as measured by EGRET above 1 GeV and model predictions based on cosmic ray–matter interaction only.  相似文献   

9.
We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centred multipolar fields. In configurations involving axisymmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high-order multipoles. Consequently, such configurations are unable to provide an efficient pair-creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axisymmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow subregions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair-production process is only possible just above these 'favourable' subregions. As a result, the pair plasma flow is confined within narrow filaments regularly distributed around the margin of the open magnetic flux tube. Such a magnetic topology allows us to model the system of 20 isolated subbeams observed in PSR B0943+10 by Deshpande & Rankin. We suggest a physical mechanism for the generation of pulsar radio emission in the ensemble of finite subbeams, based on specific instabilities. We propose an explanation for the subpulse drift phenomenon observed in some long-period pulsars.  相似文献   

10.
Rotating black holes can power the most extreme non-thermal transient sources. They have a long-duration viscous time-scale of spin-down, and produce non-thermal emissions along their spin-axis, powered by a relativistic capillary effect. We report on the discovery of exponential decay in Burst and Triensient Source Experiment (BATSE) light curves of long gamma-ray bursts (GRBs) by matched filtering, consistent with a viscous time-scale, and identify ultra-high energy cosmic rays (UHECRs) about the Greisen–Zatsepin–Kuzmin (GZK) threshold with linear acceleration of ion contaminants along the black hole spin-axis, consistent with black hole masses and lifetimes of Fanaroff–Riley type II (FR II) active galactic nuclei (AGN). We explain the absence of UHECRs from BL Lac objects due to UHECR emissions preferably at appreciable angles away from the black hole spin-axis. Black hole spin may be the key to unification of GRBs and their host environments, and to AGN and their host galaxies. Our model points to long-duration bursts in radio from long GRBs without supernovae and gravitational waves from all long GRBs.  相似文献   

11.
Accretion induced collapse(AIC)may be responsible for the formation of some interesting neutron star binaries(e.g.,millisecond pulsars,intermediate-mass binary pulsars,etc).It has been suggested that oxygen-neon white dwarfs(ONe WDs)can increase their mass to the Chandrasekhar limit by multiple He-shell flashes,leading to AIC events.However,the properties of He-shell flashes on the surface of ONe WDs are still not well understood.In this article,we aim to study He-shell flashes on the surface of ONe WDs in a systematic approach.We investigated the long-term evolution of ONe WDs accreting He-rich material with various constant mass-accretion rates by time-dependent calculations with the stellar evolution code Modules for Experiments in Stellar Astrophysics(MESA),in which the initial ONe WD masses range from 1.1 to 1.35 M.We found that the mass-retention efficiency increases with the ONe WD mass and the mass-accretion rate,whereas both the nova cycle duration and the ignition mass decrease with the ONe WD mass and the mass-accretion rate.We also present the nuclear products in different accretion scenarios.The results presented in this article can be used in the future binary population synthesis studies of AIC events.  相似文献   

12.
Pulsars play a crucial astrophy sical role as highly energetic compact radio, X-ray and gammaray sources. Our previous works show that radio pulsars identified as pulsing gamma-ray sources by the Large Area Telescope(LAT) on board the Fermi Gamma-Ray Space Telescope have high values of magnetic field near the light cylinder, two-three orders of magnitude stronger compared with the magnetic fields of radio pulsars: log B_(lc)(G) are 3.60-3.95 and 1.75 correspondingly. Moreover,their losses of rotational energy are also three orders higher than the corresponding values for the main group of radio pulsars on average: log E(erg s~(-1)) = 35.37-35.53 and 32.64. The correlation between gammaray luminosities and radio luminosities is found. It allows us to select those objects from all sets of known radio pulsars that can be detected as gamma-ray pulsars with high probability. We provide a list of such radio pulsars and propose to search for gamma emission from these objects. On the other hand,the known catalog of gamma-ray pulsars contains some sources which are not currently identified as radio pulsars. Some of them have large values of gamma-ray luminosities and according to the obtained correlation, we can expect marked radio emission from these objects. We give the list of such pulsars and expected flux densities to search for radiation at frequencies 1400 and 111 MHz.  相似文献   

13.
Thanks to the excellent performance of FAST (Five-hundred-meter Aperture Spherical radio Telescope), the number of pulsars has increased rapidly. It is very important to analyze the physical parameters of known pulsars. The overall properties of pulsars are studied by analyzing the related physical parameters such as spatial position, period, surface magnetic flux density and so on. A large number of pulsars were detected by FAST near the galactic disk, which reflect the superiority of its detection ability. The diagram of the relationship between the period and the time derivative of period of pulsars has been updated. At present, 57 pulsars have crossed the classical “death line”, and five were discovered by FAST. Finally, the physical parameters of the binary pulsar systems are statistically analyzed, the binary pulsar systems are evolving towards the direction of low eccentricity and the decrease mass of the companion star. Moreover, 9 are located above the “spin-up line”. FAST is making China into the golden age of pulsar discovery, which will further promote the rapid development of pulsar physics.  相似文献   

14.
A new picture of pulsar high-energy emission is proposed that is different from both the traditional polar cap and outer gap models, but combines elements of each. The slot gap model is based on electron acceleration along the edge of the open field region from the neutron star surface to near the light cylinder and thus could form a physical basis for the two-pole caustic model of Dyks and Rudak (2003). Along the last open field line, the pair formation front rises to very high altitude forming a slot gap, where the accelerating electric field is unscreened by pairs. The resulting radiation features both hollow cones from the lower-altitude pair cascades, seen at small viewing angles, as well as caustic emission on the trailing-edge field lines at high altitude, seen from both poles at large viewing angle. The combination of the small solid angle of slot gap emission (≪ 1 sr) with a high probability of viewing the emission predicts that more gamma-ray pulsars could be detected at larger distances. In this picture, many of the positional coincidences of radio pulsars with unidentified EGRET sources become plausible as real associations, as the flux predicted by the slot gap model for many of the pulsars would provide the observed EGRET source flux. The expected probability of seeing radio-quiet gamma-ray pulsars in this model will also be discussed.  相似文献   

15.
We study the contribution of young pulsars, with characteristic ages of less than 106 yr, to the diffuse γ-ray emission from the Large Magellanic Cloud (LMC). Based on the outer gap model for γ-ray emission proposed by Zhang & Cheng and pulsar properties in the LMC given by Hartmann, Brown & Schnepf, we simulate the properties of the young pulsars in the LMC. We show that γ-rays produced by the pulsars in the LMC may make an important contribution to the diffuse γ-rays in the LMC, especially in the high-energy range. We calculate the γ-ray energy spectrum of the pulsars in the LMC and show that the γ-ray component contributed by the pulsars to the diffuse γ-rays in the high-energy range (above ∼1 GeV) becomes dominant. We expect that none of the young pulsars should be detectable as an individual point source of γ-ray emission by EGRET. We also expect that pulsar contribution above ∼1 GeV in the SMC is very important.  相似文献   

16.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

17.
Millisecond pulsars represent an evolutionarily distinct group among rotation-powered pulsars. Outside the radio band, the soft X-ray range (~0.1–10 keV) is most suitable for studying radiative mechanisms operating in these fascinating objects. X-ray observations revealed diverse properties of emission from millisecond pulsars. For the most of them, the bulk of radiation is of a thermal origin, emitted from small spots (polar caps) on the neutron star surface heated by relativistic particles produced in pulsar acceleration zones. On the other hand, a few other very fast rotating pulsars exhibit almost pure nonthermal emission generated, most probably, in pulsar magnetospheres. There are also examples of nonthermal emission detected from X-ray nebulae powered by millisecond pulsars, as well as from pulsar winds shocked in binary systems with millisecond pulsars as companions. These and other most important results obtained from X-ray observations of millisecond pulsars are reviewed in this paper, as well as results from the search for millisecond pulsations in X-ray flux of the radio-quite neutron star RX J1856.5-3754.  相似文献   

18.
相控阵馈源(Phased array feeds, PAFs)接收机作为下一代微波接收机,为大口径射电天文望远镜的射电干扰(Radio Frequency Interference, RFI)缓解工作带来了新的解决方法. PAFs接收机对射电望远镜焦平面的电磁波进行空域采样,返回时域阵列信号,使用最小方差无失真响应(Minimum Variance Distortionless Response, MVDR)波束合成器可以自适应地识别RFI的方向,同时抑制RFI在输出信号中的功率,从而达到提升射电望远镜灵敏度的效果.仿真结果表明MVDR波束合成器对有源高能量的射电干扰有很强的识别能力和一定程度的缓解能力,同时,该波束合成器对各阵元信道中加性噪声累积引起的无源干扰有很强的抑制能力,因此, PAFs接收机的MVDR波束合成器可以增强日益复杂电磁波环境下射电望远镜的抗干扰能力.  相似文献   

19.
Shemar & Lyne have previously presented observations and an analysis of 32 glitches and their subsequent relaxations observed in a total of 15 pulsars. These data are brought together in this paper with those published by other authors. We show quantitatively how glitch activity decreases linearly with decreasing rate of slow-down. As indicated previously from studies of the Vela pulsar, the analysis suggests that 1.7 per cent of the moment of inertia of a typical neutron star is normally contained in pinned superfluid which releases its excess angular momentum at the time of a glitch. There is a broad range of glitch amplitude and there is a strong indication that pulsars with large magnetic fields suffer many small glitches while others show a smaller number of large glitches. Transient effects following glitches are very marked in young pulsars and decrease linearly with decreasing rate of slow-down, suggesting that the amount of loosely pinned superfluid decreases with age. We suggest that the low braking index of the Vela and Crab pulsars cannot be caused by a decreasing moment of inertia and should be attributed to step increases in the effective magnetic moment of the neutron star at the glitches.  相似文献   

20.
Neutron stars contain persistent, ordered magnetic fields that are the strongest known in the Universe. However, their magnetic fluxes are similar to those in magnetic A and B stars and white dwarfs, suggesting that flux conservation during gravitational collapse may play an important role in establishing the field, although it might also be modified substantially by early convection, differential rotation, and magnetic instabilities. The equilibrium field configuration, established within hours (at most) of the formation of the star, is likely to be roughly axisymmetric, involving both poloidal and toroidal components. The stable stratification of the neutron star matter (due to its radial composition gradient) probably plays a crucial role in holding this magnetic structure inside the star. The field can evolve on long time scales by processes that overcome the stable stratification, such as weak interactions changing the relative abundances and ambipolar diffusion of charged particles with respect to neutrons. These processes become more effective for stronger magnetic fields, thus naturally explaining the magnetic energy dissipation expected in magnetars, at the same time as the longer-lived, weaker fields in classical and millisecond pulsars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号