首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PUMA (Pull-Up Multichannel Array) is a sea-bottom instrument for remotely recording data from a 12 channel hydrophone array. Its purpose is to achieve (i) denser data coverage, leading to (ii) improved velocity analysis and (iii) multichannel processing of wide angle seismic data collected on the continental shelf. The instrument consists of a 1.2 km array terminating with a pressure case in which 8 FM cassette recorders, a power supply, microprocessor controller and internal clock are housed. It can be pre-programmed to switch on during shot windows for a total of four hours recording time.The PUMA was successfully used in an experiment west of Lewis, Outer Hebrides, U.K. in August–September 1984. We show an example of PUMA data from this experiment. Indications are that the instrument will provide improved constraints on seismic velocities in the lower continental crust and uppermost mantle.  相似文献   

2.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

3.
Results of the analysis and interpretation of the records of 17 ocean bottom seismometers designed at the Shirshov Institute of Oceanology, Russian Academy of Sciences (a three-component geophone and a hydrophone), installed with an interval of 10–20 km along a profile in the transition zone from the Baltic shield to the Barents Sea basin are presented. The studies were carried out in 1995 from R/V Professor Kurentsov. An air gun with a chamber volume of 80 1 was used as the source of seismic waves with a shooting interval of 250 m. The longest range of records of deep refracted and wide-angle reflected waves (up to 300 km) was reached with the hydrophones. Two-dimensional seismic modeling allowed us to refine the earlier versions of the seismic cross section of the earth’s crust and uppermost mantle in the study region. New data confirmed that, in the central area of the Barents Sea, the “granitic-metamorphic” layer of the crust with a seismic velocity of 6.2 km/s typical of the Baltic Shield is absent. In this region, a thin consolidated crust with a seismic velocity of 6.8 km/s is covered with a thick (more than 25 km) sedimentary layer. In this layer, a local low-velocity zone probably exists, which causes a strong attenuation of the “crustal” waves.  相似文献   

4.
Deep seismic sounding measurements were performed in the continent-ocean transition zone of the northern Svalbard continental margin in 1985 and 1999. Data from seismic profile AWI-99200 and from additional crossing profiles were used to model the seismic crustal structure of the study area. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and hydrophone systems (OBH). 3-D tomographic inversion methods were applied to test the previous 2-D modelling results. The results are similar to the earlier 2-D modelling, supplemented by new off-line information. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho discontinuity was found east of the Molloy Deep. The continent-ocean transition zone to the east is characterized by a complex seismic velocity structure according to the 2-D model and consists of several different crustal blocks. The zone is covered by deep sedimentary basins. Sediment thicknesses reach a maximum of 5 km. The Moho interface deepens to 28 km depth beneath the continental crust of Svalbard.  相似文献   

5.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

6.
Results are presented from a deep seismic sounding experiment with the research vessel POLARSTERN in the Scoresby Sund area, East Greenland. For this continental margin study 9 seismic recording landstations were placed in Scoresby Sund and at the southeast end of Kong Oscars Fjord, and ocean bottom seismographs (OBS) were deployed at 26 positions in and out of Scoresby Sund offshore East Greenland between 70° and 72° N and on the west flank of the Kolbeinsey Ridge. The landstations were established using helicopters from RV POLARSTERN. Explosives, a 321 airgun and 81 airguns were used as seismic sources in the open sea. Gravity data were recorded in addition to the seismic measurements. A free-air gravity map is presented. The sea operations — shooting and OBS recording — were strongly influenced by varying ice conditions. Crustal structure 2-D models have been calculated from the deep seismic sounding results. Free-air gravity anomalies have been calculated from these models and compared to the observed gravity. In the inner Scoresby Sund — the Caledonian fold belt region — the crustal thickness is about 35 km, and thins seaward to 10 km. Sediments more than 10 km thick on Jameson Land are of mainly Mesozoic age. In the outer shelf region and deep sea a ‘Moho’ cannot clearly be identified by our data. There are only weak indications for the existence of a ‘Moho’ west of the Kolbeinsey Ridge. Inside and offshore Scoresby Sund there is clear evidence for a lower crust refractor characterised byp-velocities of 6.8–7.3 km s?1 at depths between 6 and 10 km. We believe these velocities are related to magmatic processes of rifting and first drifting controlled by different scale mantle updoming during Paleocene to Eocene and Late Oligocene to Miocene times: the separation of Greenland/Norway and the separation of the Jan Mayen Ridge/Greenland, respectively. A thin igneous upper crust, interpreted to be of oceanic origin, begins about 50 km seaward of the Liverpool Land Escarpment and thickens oceanward. In the escarpment zone the crustal composition is not clear. Probably it is stretched and attenuated continental crust interspersed with basaltic intrusions. The great depth of the basement (about 5000 m) points to a high subsidence rate of about 0.25 mm yr?1 due to sediment loading and cooling of the crust and upper mantle, mainly since Miocene time. The igneous upper crust thickens eastward under the Kolbeinsey Ridge to about 2.5 km; the thickening is likely caused by higher production of extrusives. The basementp-velocity of 5.8–6.0 km s?1 is rather high. Such velocities are associated with young basalts and may also be caused by a higher percentage of dykes. Tertiary to recent sediments, about 5000 m thick, form most of the shelf east of Scoresby Sund, Liverpool Land and Kong Oscars Fjord. This points to a high sedimentation rate mainly since the Miocene. The deeper sediments have a rather high meanp-velocity of 4.5 km s?1, perhaps due to pre-Cambrian to Caledonian deposits of continental origin. The upper sediments offshore Scoresby Sund are thick and have a rather low velocity. They are interpreted as eroded material transported from inside the Sund into the shelf region. Offshore Kong Oscars Fjord the upper sediments, likely Jurassic to Devonian deposits, are thin in the shelf region but thicken to more than 3000 m in the slope area. The crust and upper mantle structure in the ocean-continent transition zone is interpreted to be the result of the superposition of the activities of three rifting phases related to mantle plumes of different dimensions:
  1. the ‘Greenland/Norway separation phase’ of high volcanic activity,
  2. the ‘Jan Mayen Ridge/Greenland separation phase’ and
  3. the ‘Kolbeinsey Ridge phase’ of ‘normal’ volcanic activity related to a more or less normal mantle temperature.
During period 2 and 3 only a few masses of extrusives were produced, but large volumes of intrusives were emplaced. So the margin between Scoresby Sund and Jan Mayen Fracture Zone is interpreted to be a stretched margin with low volcanic activity.  相似文献   

7.
The structure of the oceanic crust adjacent to the Côte d’Ivoire–Ghana transform margin is deduced from multichannel seismic reflection and seismic wide-angle data, showing crustal heterogeneities within oceanic basement; the oceanic crust adjacent to the transform margin is half as thick as standard Atlantic oceanic crust. Refraction data indicate a gradual velocity transition towards typical mantle velocities. Such an abnormal oceanic crustal structure appears quite similar to crustal structures known along transform faults. This crustal thinning may be related to thermal effects of the nearby continental crust, on the oceanic accretion processes. We did not find geophysical evidence for oceanic crust contamination by continental lithosphere.  相似文献   

8.
The South China Sea is the largest marginal basin of SE Asia, yet its mechanism of formation is still debated. A 1000-km long wide-angle refraction seismic profile was recently acquired along the conjugate margins of the SW sub-basin of the South China Sea, over the longest extended continental crust. A joint reflection and refraction seismic travel time inversion is performed to derive a 2-D velocity model of the crustal structure and upper mantle. Based on this new tomographic model, northern and southern margins are genetically linked since they share common structural characteristics. Most of the continental crust deforms in a brittle manner. Two scales of deformation are imaged and correlate well with seismic reflection observations. Small-scale normal faults (grabens, horsts and rotated faults blocks) are often associated with a tilt of the velocity isocontours affecting the upper crust. The mid-crust shows high lateral velocity variation defining low velocity bodies bounded by large-scale normal faults recognized in seismic reflection profiles. Major sedimentary basins are located above low velocity bodies interpreted as hanging-wall blocks. Along the northern margin, spacing between these velocity bodies decreases from 90 to 45 km as the total crust thins toward the Continent–Ocean Transition. The Continent–Ocean Transitions are narrow and slightly asymmetric – 60 km on the northern side and no more than 30 km on the southern side – indicating little space for significant hyper-stretched crust. Although we have no direct indication for mantle exhumation, shallow high velocities are observed at the Continent–Ocean Transition. The Moho interface remains rather flat over the extended domain, and remains undisturbed by the large-scale normal faults. The main décollement is thus within the ductile lower crust.  相似文献   

9.
南海区域岩石圈的壳-幔耦合关系和纵向演化   总被引:11,自引:2,他引:11  
南海区域岩石圈由地壳层和上地幔固结层两部分组成。具典型大洋型地壳结构的南海海盆区莫霍面深度为9~13km,并向四周经陆坡、陆架至陆区逐渐加深;陆缘区莫霍面一般为15~28km,局部区段深达30~32km,总体呈与水深变化反相关的梯度带;东南沿海莫霍面深约28~30km,往西北方向逐渐增厚,最大逾36km。南海区域上地幔天然地震面波速度结构明显存在横向分块和纵向分层特征。岩石圈底界深度变化与地幔速度变化正相关;地幔岩石圈厚度与地壳厚度呈互补性变化,莫霍面和岩石圈底界呈立交桥式结构,具有陆区厚壳薄幔—洋区薄壳厚幔的岩石圈壳-幔耦合模式。南海区域白垩纪末以来的岩石圈演化主要表现为陆缘裂离—海底扩张—区域沉降的过程,现存的壳-幔耦合模式显然为岩石圈纵向演化产物,其过程大致可分为白垩纪末至中始新世的陆缘裂离、中始新世晚期至中新世早期的海底扩张和中新世晚期以来的区域沉降等三个阶段。  相似文献   

10.
TAIGER project deep-penetration seismic reflection profiles acquired in the northeastern South China Sea (SCS) provide a detailed view of the crustal structure of a very wide rifted continental margin. These profiles document a failed rift zone proximal to the shelf, a zone of thicker crust 150 km from the shelf, and gradually thinning crust toward the COB, spanning a total distance of 250–300 km. Such an expanse of extended continental crust is not unique but it is uncommon for continental margins. We use the high-quality images from this data set to identify the styles of upper and lower crustal structure and how they have thinned in response to extension and, in turn, what rheological variations are predicted that allow for protracted crustal extension. Upper crustal thinning is greatest at the failed rift (βuc ≈ 7.5) but is limited farther seaward (βuc ≈ 1–2). We interpret that the lower crust has discordantly thinned from an original 15–17 km to possibly less than 2–3 km thick beneath the central thick crust zone and more distal areas. This extreme lower crustal thinning indicates that it acted as a weak layer allowing decoupling between the upper crust and the mantle lithosphere. The observed upper crustal thickness variations and implied rheology (lower crustal flow) are consistent with large-scale boudinage of continental crust during protracted extension.  相似文献   

11.
The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of the ultra- slow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and do- mains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.  相似文献   

12.
During summer of 2009, multi-channel marine seismic reflection data and wide-angle refraction data were acquired as part of the joint NSF and Taiwanese-funded TAIGER program with the goal of understanding the dynamics of arc-continent collision in Taiwan. One of the principle difficulties of crustal-scale imaging with marine reflection data such as these is the prevalent multiple contamination that obscures many of the deep crustal targets. Without effective treatment of multiples, many of the objectives of the TAIGER active source program may not be achieved. We present three profiles, one from each acquisition leg, that demonstrate the effectiveness of 2D surface-related multiple elimination (SRME) and radon filtering in attenuating much of this unwanted energy in broad ranges of water depths, seafloor topographies and lithologies. Two profiles from south of Taiwan image 3–4 km of sedimentary strata overlying moderately extended continental crust along the Eurasia continental shelf and a 5–6 km thick sedimentary section overlying thin crust consisting of faulted blocks and volcanic bodies along the continental slope. Our multiple attenuation efforts also reveal a seaward-dipping normal fault that penetrates into the upper mantle and separates thick crust of the continental shelf from thin crust of the continental slope. A profile from east of Taiwan reveals thin ocean crust of the Philippine Sea plate subducting beneath the Ryukyu trench that may be traced beneath the accretionary prism and Ryukyu forearc. These profiles demonstrate the success of our imaging strategy in the range of imaging environments spanned by the TAIGER marine reflection seismic data.  相似文献   

13.
Two seismic refraction and gravity lines were obtained along and normal to the axis of the Aegir Rift, an extinct spreading centre in the Norway Basin. Velocity-depth solutions and crustal structure models are derived from ocean-bottom records using two-dimensional ray tracing and synthetic seismogram modelling techniques. Gravity data are used to generate models consistent with the lateral variations in thickness of the layers in the crustal models. The resulting models require considerable degree of lateral inhomogeneity along and perpendicular to the rift axis. Crust within the extinct spreading centre is found to be thinner and of low P-wave velocity when compared with the crust sampled off-axis. To explain reduced velocities of the lower crust we suggest that, due to the relationship between fracturing and seismic velocity, the decreasing spreading rate leading up to extinction let the mechanically strong layer thicken, so that faulting and fracturing extended to greater depths . Low velocities are also observed in the uppermost mantle underlying the extinct spreading ridge. This zone is attributed to hydrothermal alteration of upper mantle peridotites. Furthermore, after spreading ceased 32-26 my ago, ongoing passive hydrothermal circulation was accompanied by the precipitation of alteration products in open void spaces, thereby decreasing the porosity and increasing the velocity. Consequently the typical low velocities of layer 2 found at active mid-ocean ridges have been replaced by values typical of mature oceanic crust.  相似文献   

14.
This paper presents actuality of investigation and study of the crustal structure characters of East China Sea at home and abroad. Based on lots of investigation and study achievements and the difference of the crustal velocity structure from west to east, the East China Sea is divided into three parts - East China Sea shelf zone, Okinawa Trough zone and Ryukyu arc-trench zone. The East China Sea shelf zone mostly has three velocity layers, i.e., the sediment blanket layer (the velocity is 5.8-5.9 km/s), the basement layer (the velocity is 6.0-6.3 km/s), and the lower crustal layer (the velocity is 6.8-7.6 km/s). So the East China Sea shelf zone belongs to the typical continental crust. The Okinawa Trough zone is located at the transitional belt between the continental crust and the oceanic crust. It still has the structural characters of the continental crust, and no formation of the oceanic crust, but the crust of the central trough has become to thinning down. The Ryukyu arc-trench zone belongs to the transitional type crust as a whole, but the ocean side of the trench already belongs to the oceanic crust. And the northwest Philippine Basin to the east of the Ryukyu Trench absolutely belongs to the typical oceanic crust.  相似文献   

15.
《Marine Geology》2005,216(3):145-154
The Eastern Basin in the Ross Sea (Antarctica) contains a sedimentary sequence that is a direct record of advance and retreat of the West Antarctic Ice Sheet.We analyzed a sedimentary section ranging from the upper Miocene to present.The joint tomographic inversion of refracted and reflected arrivals of pre-stack multi-channel seismic data revealed in this area the presence of layers with anomalous high velocity. These anomalies are correlated with sediments that were eroded and compacted by the load of the West Antarctic Ice Sheet during its expansion on the continental shelf.The deepest and stronger velocity anomaly correspond to a basin-wide seismic unconformity (RSU2, Late Miocene–Early Pliocene in age). This anomaly is interpreted as evidence of a major advance of the West Antarctic ice sheet on the continental shelf that resulted in high velocity and low porosity in sediment immediately above the unconformity.  相似文献   

16.
This paper describes a pop-up ocean bottom seismograph designed primarily for refraction surveys both on the continental shelf and in deep sea. Its development is the extension of our system based on seismic detectors located on the sea floor with radio transmission of seismic signals and used for seismic refraction studies on the continental shelf. The seismic detectors (vertical geophone or hydrophone and two orthogonally mounted horizontal geophones) are located outside of the pressure vessel on the main frame. Optionally, the seismic sensors may be decoupled from the main frame assembly. This decoupling is performed by a mobile arm positioning the separate three component sensor package on the sea floor.Contribution No. 455 of the Département Scientifique, Centre Océanologique de Bretagne.  相似文献   

17.
东沙群岛海域的折射地震探测   总被引:8,自引:0,他引:8  
综合近十多年以来在东沙群岛海域进行的反射地震资料,声纳浮标资料,双船扩长排列剖面地震测量资料及海底地震仪的折射地震资料,绘制了东沙群岛海域关于沉积层基底与地壳结构的地震地质剖面,揭示了陆架,陆坡至中央海盆之间的地壳从陆壳向洋壳的变化中,过渡睦壳具有断块构造及被拉薄的特点。  相似文献   

18.
We describe recent mechanical andeelectronic modifications to the Cambridge Ocean Bottom Hydrophone system, enabling it to record in addition three geophone channels from a deployed, disposable geophone package. Examples of data from seismic refraction experiments show good correspondence between records of ground motion detected by the hydrophone and the vertical geophone. Seismic signals are undistorted by noise from instrument related sources. Clear examples of P to S conversions just below the receiver are observed. Improved recording conditions are achieved by deploying the geophones in a small pressure vessel as far away as possible from the main instrument package.  相似文献   

19.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

20.
This paper describes the analysis and interpretation of six Expanding Spread Profiles (ESP) which were shot approximately perpendicular to a 300 km long vertical reflection profile along the eastern continental margin of the Bay of Biscay (Aquitaine shelf) by the French ECORS program in association with Hispanoil. This transect crosses various tectonic features of different ages: the Armorican shelf, the Parentis basin and the Cantabria shelf. Velocity—depth models have been derived from the ESPs by the combination of two complementary methods using time-distance and intercept-slowness domains. They provide important constraints for the analysis of the vertical reflection data. The velocities allow definition of crustal layering with a 5.8-6.2 km s−1 upper crust and a 6.5–7.1 km s−1 lower crust. This layering matches the change of reflectivity observed on CDP data with a relatively transparent upper crust and upper mantle in opposition to a highly layered lower crust. Important variations of the thickness of these two layers are revealed by this study. The most important one occurs beneath the Parentis basin with a 15 km shallowing of the upper mantle, the velocity distribution suggesting that major crustal thinning has taken place at the cost of a large part of the lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号