首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of numerical prognostic experiments performed with a resolution of 1.64 km in the horizontal coordinates. Unlike the calculations performed with coarser resolution, we reveal the following dynamic specific features: The Rim Current is traced down to 400 m as a continuous jet directed along the continental slope. Mesoscale anticyclonic eddies are regularly formed along the east part of the Anatolian coast and affect the formation of the Batumi anticyclone. The Sevastopol, Sinop, Kizilirmak, and Caucasian anticyclonic eddies are quasiperiodic. A region of cyclonic rotation of waters is formed between the newly formed Sevastopol anticyclone and the previous eddy.  相似文献   

2.
Based on the surface drifters that moved out from the Sea of Okhotsk to the Pacific, the surface velocity fields of mean, eddy, and tidal components in the Oyashio region are examined for the period September 1999 to August 2000. Along the southern Kuril Island Chain, the Oyashio Current, having a width of ∼100 km, exists with velocities of 0.2–0.4 m s−1. From 40°N to 43°N, the Subarctic Current flows east- or northeastward with velocities of 0.1–0.3 m s−1, accompanied by a meandering Oyashio or Subarctic front. Between the Oyashio and Subarctic current regions, an eddy-dominant region exists with both cyclonic and anticyclonic eddies. The existence of an eastward flow just south of Bussol' Strait is suggested. The 2000 anticyclonic warmcore ring located south of Hokkaido was found to have a nearly symmetric velocity structure with a maximum velocity of ∼0.7 m s−1 at 70 km from the eddy center. Diurnal tidal currents with a clockwise tidal ellipse are amplified over the shelf and slope off Urup and Iturup Islands, suggesting the presence of diurnal shelf waves. From Lagrangian statistics, the single-particle diffusivity is estimated to be ∼10 × 107 cm2s−1.  相似文献   

3.
Scaling of the equations of motion of the Antarctic Circumpolar Current indicates that the Rossby number and the Ekman number are 10−4 to 10−5 but the vertical Ekman number may reach unity in the bottom boundary layer. The equations of motion are integrated vertically from the surface to the bottom and averaged over a latitude circle. The resulting equation in the meridional direction is predominantly geostrophic, whereas the main terms of the equation in the zonal direction are the wind stress and the bottom stress. When the vertical eddy viscosity near the bottom is of the order of 102cm2/sec, the total zonal transport through the Drake Passage computed from the balance of the wind stress and the bottom stress equals 260×106m3/sec, the amount determined byReid andNowlin (1970) from observations. The northward transport reduces the eastward transport corresponding to the wind stress of the westerlies in the A. C. C. through the Coriolis' term in the vertically integrated equation of motion of the zonal direction. South of the Drake Passage, such reduction reaches about ten percent of the wind-driven transport mainly due to the peripheral water discharge. North of the Drake Passage, the northward transport may be generated by the effect of the South American coast which prevents free eastward movement of the A. C. C., causing a wake to the east. This transport may contribute to a part of the northward transport of the bottom water postulated byMunk (1966). The effect of the horizontal eddy viscosity in the zonal transport equation is negligible except near the Antarctic coast, if the eddy viscosity is less than 109cm2/sec.  相似文献   

4.
Three High Frequency (HF) ocean radar stations were installed around the Soya/La Perouse Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current (SWC). The frequency of the HF radar is 13.9 MHz, and the range and azimuth resolutions are 3 km and 5 deg., respectively. The radar covers a range of approximately 70 km from the coast. The surface current velocity observed by the HF radars was compared with data from drifting buoys and shipboard Acoustic Doppler Current Profilers (ADCPs). The current velocity derived from the HF radars shows good agreement with that observed using the drifting buoys. The root-mean-square (rms) differences were found to be less than 20 cm s−1 for the zonal and meridional components in the buoy comparison. The observed current velocity was also found to exhibit reasonable agreement with the shipboard ADCP data. It was shown that the HF radars clearly capture seasonal and short-term variations of the SWC. The velocity of the Soya Warm Current reaches its maximum, approximately 1 m s−1, in summer and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 40 km. The surface transport by the SWC shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records at Wakkanai and Abashiri. Deceased.  相似文献   

5.
The profiles of absolute current velocity obtained by using a lowered acoustic doppler current profiler (LADCP) are presented. In the course of the BSERP-3 expedition, the measurements were carried out in the regions of the Rim Current, anticyclonic eddy, and northwest shelf. In the core of the Rim Current, a unidirectional motion of waters is traced in layers below the main pycnocline down to depths greater than 500 m. Its characteristic velocity can be as high as 0.08 m/sec. It is shown that the direct action of the eddy is detected in the shelf region at distances larger than 20 km from the outer edge of the shelf in the zone bounded by an isobath of 100 m. The formation of multilayer vertical structures in the field of current velocities is revealed in the region of interaction of the anticyclonic eddy with irregularities of the bottom on the side of the shelf. A two-layer structure of currents with specific features in the layer of formed seasonal pycnocline is observed in the region of the shelf down to an isobath of 100 m. The profiles of the moduli of vertical shears of currents averaged over the casts ensemble are presented for the abyssal and shelf parts of the sea. It is shown that the shears induced by the geostrophic currents and wave processes in the region of the main pycnocline are comparable. Below the pycnocline, the shears are mainly determined by the wave processes. Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 25–37, November–December, 2008.  相似文献   

6.
Using manganese-impregnated fiber extraction and high-efficiency gamma counting techniques, we measured the distribution of 228Ra and 226Ra in surface waters near the coast of Japan and in the western North Pacific. There is no evidence in our data that any significant amount of 228Ra is added to open ocean surface waters from the coastal waters around Tokyo Bay. High 228Ra concentrations (> 10 dpm/103 kg), were observed along the Kuroshio Current as compared to < 2.5 dpm/103 kg between 10° and 30°N of the central gyre, and hence the major source of 228Ra in the surface water is likely to be the East Asian continental shelf zones. A simple one-dimensional eddy diffusion and advection model is used to explain the observed decrease of 228Ra from coast to the open ocean. The model results indicate two mixing regimes across the Kuroshio Current System with apparent eddy diffusion coefficients of Ky = 4 × 105 cm2 s−1 at distance y < 200 km from the coast, and Ky = 4 × 107 cm2 s−1 at y > 200 km. Along 40°N where an eastward flow of the ‘Kuroshio Extension’ prevails, an advective flow of > 0.1 knot is consistent with the observation of nearly constant 228Ra along the track.The geographical distribution pattern of 228Ra is clearly different from that of atmospherically derived 210Pb. Thus the 228Ra in surface water serves as a useful tracer that accompanies fluvially and coastally derived elements during their subsequent lateral transport toward the central gyre.  相似文献   

7.
The first iron (Fe) – fertilization experiment in the western North Pacific was carried out using SF6 to trace the Fe-fertilized water mass. A solution in 10,800 liters of seawater of 350 kg of Fe and 0.48 M of SF6 tracer was released into the mixed layer over a 8 × 10 km area. On the first underway transects through the patch after the Fe release, we observed a significant increase of dissolved Fe (ave. 2.89 nM). The fertilized patch was traced for 14 days by on-board SF6 analysis. A Lagrangian frame of reference was maintained by the use of a drogued GPS buoy released at the center of the patch. The patch moved westward at a rate of 6.8 km d−1. Mixed layer depth increased from 8.5 to 15 m during the experiment. Horizontal diffusivity was determined by the change of SF6 concentration in the patch. The horizontal diffusivity increased during the experiment. We evaluate here the fate of Fe in a Fe-fertilized patch using the dilution rate determined from sulphur hexafluoride (SF6) concentration. Dissolved Fe concentrations subsequently decreased rapidly to 0.15 nM on Day 13. However, the dissolved Fe half-life of 43 h was relatively longer than in previous Fe-enrichment studies, and we observed a larger increase of the centric diatom standing stock and corresponding drawdown of macro-nutrients and carbon dioxide than in the previous studies. The most important reason for the larger response was the phytoplankton species in the western North Pacific. In addition, the smaller diffusivity and shallower mixed layer were effective to sustain the higher dissolved Fe concentration compared to previous experiments. This might be one reason for the larger response of diatoms in SEEDS.  相似文献   

8.
During the IOP (Intensive Observation Period) of TOGA/COARE (Tropical Ocean and Global Atmosphere/Coupled Ocean Atmosphere Response Experiment) from December 1992 to February 1993, four Japanese moored ADCPs (Acoustic Doppler Current Profilers) measured vertical profiles of three-component velocities at the stations 2S (2°S, 156°E), 2N (2°N, 156°E), 154E (0°N, 154°E) and 147E (0°N, 147°E). Power spectra of the surface current showed a pronounced peak having a period of around 14 days for both the zonal and meridional velocities at the stations 2S and 2N near the equator, and for only the meridional velocity at the equator. This 14-day phenomenon is considered to be a kind of equatorial wave of the first baroclinic mode, from a comparison of the result of the vertical mode analysis and the vertical distribution of the standard deviation of band-pass filtered velocity fluctuations. A dispersion relationship obtained from the horizontal mode analysis of this wave confirmed that the 14-day phenomenon is a mixed Rossby-gravity wave with the westward propagating phase speed and eastward propagating group velocity. From the cross-spectral analysis of velocity data, the average phase speed and wavelength of the wave were estimated as 3.64 m s−1 and 3939 km, respectively, for station pair 2S∼147E. These values were in good agreement with the average phase speed and wavelength of 3.58 m s−1 and 3836 km estimated from the dispersion curve and the observed period. A northerly wind burst blew over all the mooring sites during the middle of the observation period. The mixed Rossby-gravity wave, which is anti-symmetric for the zonal velocity about the equator, is likely to be forced by this northerly wind burst crossing the equator. Generation of the oceanic mixed Rossby-gravity wave of the first baroclinic mode is discussed in association with the atmospheric Rossby wave having the same period.  相似文献   

9.
In support of the Deep Basin Experiment, part of the World Ocean Circulation Experiment, a large number of neutrally buoyant floats were released within the Brazil Basin during the 1990s in an attempt to measure directly the circulation in the deep ocean interior. Three levels corresponding to the three major subthermocline water masses were selected, and results from the deeper two (North Atlantic Deep Water, NADW, and Antarctic Bottom Water, AABW) are described. At this writing processing of acquired tracking data is incomplete. Hence, this paper reports on the progress of the observational program and gives our initial conclusions.It appears that the flow in the deep Brazil Basin is unlike previous conjectures in which the circulation patterns can be characterized as being primarily meridional, both along the western boundary and in the interior. The existence of a deep western boundary current (DWBC) is quite clear in the float data at the NADW level, but less prominent in the AABW, and the interior flow is dominantly zonal with unexpectedly small meridional space scales. Integral time scales are long, of order 20–30 days, and eddy kinetic energy levels are low, of order 1 cm2/s2. In spite of the low energy levels a surprising number of our floats became caught up in vortices.A line of seamounts extending offshore near 20°S, known as the Vitória–Trindade Seamounts, interrupts the DWBCs and is the location for eddy formation and apparent flow away from the boundary into the interior. Although it has been speculated that this could feed a narrow zonal current of NADW (the “Namib Col Current”) our float trajectories suggest a return to the western boundary, rather than a continuation to the east.  相似文献   

10.
Ship and satellite observations taken over the last thirty years show that mesoscale patterns of sea surface temperature (SST) in the California Current System are consistently found throughout the year and usually occur in approximately the same geographical locations. Typically, these patterns are more pronounced in fall/winter than in spring/summer. The temporal and spatial characteristics of these persistent feature were examined with satellite infrared (IR) measurements during winter 1980–1981. In January 1981, a ship surveyed the vertical structure of several physical, chemical, and biological parameters beneath one of these SST features centered near 32°N, 124°W. The surface IR pattern had a length scale of 200 km and a time scale of about 100 days. It disintegrated following the first two storms of the winter season. Motion studies of the pattern in late October indicated an anticyclonic rotation with maximum velocities of 50 cm s?1 at 50 km from the axis of rotation. As a unit, the pattern advected southward with an average speed of 1 cm s?1. Thermal fronts, determined from the satellite imagery, were strongest (0.4°C km?1) along the rim of the pattern and were advected anticyclonically with the pattern; their length scales were 20–30 km in the along-front direction and less than 10 km wide. The hydrographic data revealed a three-layer structure beneath the surface pattern; a 75 m deep surface layer, a cold-core region from 75 to 200 m depth, and a warm-core eddy extending from 250 to 1450 m. The anticyclonic motion of the surface layer was caused by a geostrophic adjustment to the surface dynamic height anomaly produced by the subsurface warm-core eddy. The IR pattern observed from space reflects the horizontal structure of the surface layer and is consistent with a theoretical model of a mean horizontal SST gradient perturbed by a subsurface density anomaly. Ship of opportunity SST observations collected by the National Marine Fisheries are shown to resolve mesoscale patterns. For December 1980, the SST pattern near 32°N, 124°W represented a 2°C warm anomaly compared with the 20-year mean monthly SST pattern.  相似文献   

11.
CTD and ADCP measurements together with a sequence of satellite images indicate pronounced current meandering and eddy activity in the western Black Sea during April 1993. The Rim Current is identified as a well-defined meandering jet stream confined over the steepest topographic slope and associated cyclonic–anticyclonic eddy pairs located on both its sides. It has a form of highly energetic and unstable flow system, which, as it propagates cyclonically along the periphery of the basin, is modified in character. It possesses a two-layer vertical structure with uniform upper layer speed in excess of 50 cm/s (maximum value ∼100 cm/s), followed by a relatively sharp change across the pycnocline (between 100 and 200 m) and the uniform sub-pycnocline currents of 20 cm/s (maximum value ∼40 cm/s) observed up to the depth of ∼350 dbar, being the approximate limit of ADCP measurements. The cross-stream velocity structure exhibits a narrow core region (∼30 km), flanked by a narrow zone of anticyclonic shear on its coastal side and a broader region of cyclonic shear on its offshore side. The northwestern shelf circulation is generally decoupled from the influence of the basinwide circulation and is characterized by much weaker currents, less than 10 cm/s. The southward coastal flow associated with the Danube and Dinepr Rivers is weak during the measurement period and is restricted to a very narrow coastal zone.The data suggest the presence of temperature-induced overturning prior to the measurements, and subsequent formation of the Cold Intermediate Water mass (CIW) within the Northwestern Shelf (NWS) and interior of the western basin. The newly formed shelf CIW is transported in part along the shelf by the coastal current system, and in part it flows downslope across the shelf and intrudes into the Rim Current convergence zone. A major part of the cold water mass, however, seems to be trapped within the northwestern shelf. The CIW mass, injected into the Rim Current zone from the shelf and the interior region, is then circulated around the basin.  相似文献   

12.
The eddy-resolving (1/30)° version of the low-dissipative DieCAST [7] ocean circulation model is used for modeling processes of the protrusion of near-coastal anticyclonic eddies (NAEs) through the Rim Current (RC). Under mean climatic forcing, the model realistically reproduces the evolution of the Caucasian NAE (CNAE) from its generation, formation of an attached anticyclonic meander, protrusion through the RC, and, finally, to the formation of an isolated anticyclonic eddy and its dissipation within the Eastern Cyclonic Gyre of the Black Sea. The process of double protrusion of the CNAE and the Kizil-Yirmak NAE into the RC, their passages through the RC, and merging in the eastern part of the Black Sea is also considered. The modeled space-time parameters of NAE evolution agree well with satellite observations [15, 23].  相似文献   

13.
The northward flowing Antarctic Intermediate Water (AAIW) is a major contributor to the large-scale meridional circulation of water masses in the Atlantic. Together with bottom and thermocline water, AAIW replaces North Atlantic Deep Water that penetrates into the South Atlantic from the North. On the northbound propagation of AAIW from its formation area in the south-western region of the Argentine Basin, the AAIW progresses through a complex spreading pattern at the base of the main thermocline. This paper presents trajectories of 75 subsurface floats, seeded at AAIW depth. The floats were acoustically tracked, covering a period from December 1992 to October 1996. Discussions of selected trajectories focus on mesoscale kinematic elements that contribute to the spreading of AAIW. In the equatorial region, intermittent westward and eastward currents were observed, suggesting a seasonal cycle of the AAIW flow direction. At tropical latitudes, just offshore the intermediate western boundary current, the southward advection of an anticyclonic eddy was observed between 5°S and 11°S. Farther offshore, the flow lacks an advective pattern and is governed by eddy diffusion. The westward subtropical gyre return current at about 28°S shows considerable stability, with the mean kinetic energy to eddy kinetic energy ratio being around one. Farther south, the eastward deeper South Atlantic Current is dominated by large-scale meanders with particle velocities in excess of 60 cm s-1. At the Brazil–Falkland Current Confluence Zone, a cyclonic eddy near 40°S 50°W seems to act as injector of freshly mixed AAIW into the subtropical gyre. In general, much of the mixing of the various blends of AAIW is due to the activity of mesoscale eddies, which frequently reoccupy similar positions.  相似文献   

14.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   

15.
This paper presents a parameterized model for the particulate and dissolved manganese profiles in two stratified fjords. Rates of oxidation and reduction of manganese are of the order of 1.0 × 10−15 mol cm−3 s−1. Oxidation of manganese is probably not promoted by an inorganic surface-catalyzed reaction. Cycling of manganese in the redoxcline is extensive (10–100 cycles) and is related to the input of manganese to the fjords. Calibration of the model against sediment-trap-data allow instantaneous eddy diffusion coefficients to be estimated. These are of the order of 0.01 and 1.0 × 10−4 cm2 s−1.  相似文献   

16.
Mesoscale eddies in the Kuroshio recirculation region south of Japan have been investigated by using surface current data measured by an Acoustic Doppler Current Profiler (ADCP) installed on a regular ferry shuttling between Tokyo and Chichijima, Bonin Islands, and sea surface height anomaly derived from the TOPEX/POSEIDON altimeter. Many cyclonic and anticyclonic eddies were observed in the region. Spatial and temporal scales of the eddies were determined by lag-correlation analyses in space and time. The eddies are circular in shape with a diameter of 500 km and a temporal scale of 80 days. Typical maximum surface velocity and sea surface height anomaly associated with the eddies are 15–20 cm s–1 and 15 cm, respectively. The frequency of occurrence, temporal and spatial scales, and intensity are all nearly the same for the cyclonic and anticyclonic eddies, which are considered to be successive wave-like disturbances rather than solitary eddies. Phase speed of westward propagation of the eddies is estimated as 6.8 cm s–1, which is faster than a theoretical estimate based on the baroclinic first-mode Rossby wave with or without a mean current. The spatial distribution of sea surface height variations suggests that these eddies may be generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region, though further studies are needed to clarify the generation processes.  相似文献   

17.
Altimeter and in situ data are used to estimate the mean surface zonal geostrophic current in the section along 115°E in the southern Indian Ocean,and the variation of strong currents in relation to the major fronts is studied.The results show that,in average,the flow in the core of Antarctic Circumpolar Current(ACC) along the section is composed of two parts,one corresponds to the jet of Subantarctic Front(SAF) and the other is the flow in the Polar Front Zone(PFZ),with a westward flow between them.The mean surface zonal geostrophic current corresponding to the SAF is up to 49 cm · s-1 at 46°S,which is the maximal velocity in the section.The eastward flow in the PFZ has a width of about 4.3 degrees in latitudes.The mean surface zonal geostrophic current corresponding to the Southern Antarctic Circumpolar Current Front(SACCF) is located at 59.7 °S with velocity less than 20 cm · s-1.The location of zonal geostrophic jet corresponding to the SAF is quite stable during the study period.In contrast,the eastward jets in the PFZ exhibit various patterns,i.e.,the primary Polar Front(PF1) shows its strong meridional shift and the secondary Polar Front(PF2) does not always coincide with jet.The surface zonal geostrophic current corresponding to SAF has the significant periods of annual,semi-annual and four-month.The geostrophic current of the PFZ also shows significant periods of semi-annual and four-month,but is out of phase with the periods of the SAF,which results in no notable semi-annual and fourmonth periods in the surface zonal geostrophic current in the core of the ACC.In terms of annual cycle,the mean surface zonal geostrophic current in the core of the ACC shows its maximal velocity in June.  相似文献   

18.
Shear and Richardson number in a mode-water eddy   总被引:1,自引:0,他引:1  
Measurements of stratification and shear were carried out as part of the EDDIES tracer release experiment in mode-water eddy A4 during the summer of 2005. These measurements were accomplished using both shipboard instrumentation and a drifting mooring. A strong relationship between shear intensity and distance from the center of the eddy A4 was observed with the shipboard ADCP. Diapycnal diffusivity at the SF6 tracer isopycnal prior to and during the release was estimated from the drifting mooring to be 2.9×10−6 m2 s−1. Diffusivity increased by an order of magnitude to 3.2×10−5 m2 s−1 during the period of the final tracer survey in early September, which was similar to the value estimated from the tracer analysis for the whole experiment (3.5×10−5 m2 s−1, [Ledwell, J.R., McGillicuddy Jr., D.J., Anderson, L.A., 2008. Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy. Deep-Sea Research II, this issue [doi:10.1016/j.dsr2.2008.02.005]].  相似文献   

19.
An intense deep chlorophyll layer in the Sargasso Sea was reported near the center of an anticyclonic mode-water eddy by McGillicuddy et al. [2007. Eddy–wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, accepted]. The high chlorophyll was associated with anomalously high concentrations of diatoms and with a maximum in the vertical profile of 14C primary productivity. Here we report tracer measurements of the vertical advection and turbulent diffusion of deep-water nutrients into this chlorophyll layer. Tracer released in the chlorophyll layer revealed upward motion relative to isopycnal surfaces of about 0.4 m/d, due to solar heating and mixing. The density surfaces themselves shoaled by about 0.1 m/d. The upward flux of dissolved inorganic nitrogen, averaged over 36 days, was approximately 0.6 mmol/m2/d due to both upwelling and mixing. This flux is about 40% of the basin wide, annually averaged, nitrogen flux required to drive the annual new production in the Sargasso Sea, estimated from the oxygen cycle in the euphotic zone, the oxygen demand below the euphotic zone, and from the 3He excess in the mixed layer. The observed upwelling of the fluid was consistent with theoretical models [Dewar, W.K., Flierl, G.R., 1987. Some effects of wind on rings. Journal of Physical Oceanography 17, 1653–1667; Martin, A.P., Richards, K.J., 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Research II 48, 757–773] in which eddy surface currents cause spatial variations in surface stress. The diapycnal diffusivity at the base of the euphotic zone was 3.5±0.5×10−5 m2/s. Diapycnal mixing was probably enhanced over more typical values by the series of storms passing over the eddy during the experiment and may have been enhanced further by the trapping of near-inertial waves generated within the eddy.  相似文献   

20.
Mesoscale eddies and tropical instability waves in the eastern tropical Pacific, first revealed by satellite infrared imagery, play an important role in the dynamics and biology of the region, and in the transfer of mass, energy, heat, and biological constituents from the shelf to the deep ocean and across the equatorial currents.From boreal late autumn to early spring, four to 18 cyclonic or anticyclonic eddies are formed off the coastal region between southern Mexico and Panama. The anticyclonic gyres, which tend to be larger and last longer than the cyclonic ones, are the best studied: they typically are 180–500 km in diameter, depress the pycnocline from 60 to 145 m at the eddy center, have swirl speeds in excess of 1 m s−1, migrate west at velocities ranging from 11 to 19 cm s−1 (with a slight southward component), and maintain a height signature of up to 30 cm. The primary generating agents for these eddies are the strong, intermittent wind jets that blow across the isthmus of Tehuantepec in Mexico, the lake district in Nicaragua and Costa Rica, and the Panama canal. Other proposed eddy-generating mechanisms are the conservation of vorticity as the North Equatorial Counter Current (NECC) turns north on reaching America, and the instability of coastally trapped waves/currents.Tropical Instability Waves (TIWs) are perturbations in the SST fronts on either side of the equatorial cold tongue. They produce SST variations on the order of 1–2 °C, have periods of 20–40 days, wavelengths of 1000–2000 km, phase speeds of around 0.5 m s−1 and propagate westward both north and south of the Equator. The Tropical Instability Vortices (TIVs) are a train of westward-propagating anticyclonic eddies associated with the TIWs. They exhibit eddy currents exceeding 1.3 m s−1, a westward phase propagation speed between 30 and 40 km d−1, a signature above the pycnocline, and eastward energy propagation. Like the TIWs, they result from the latitudinal barotropically unstable shear between the South Equatorial Current (SEC) and the NECC with a potential secondary source of energy from baroclinic instability of the vertical shear with the Equatorial Undercurrent (EUC).This review of mesoscale processes is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号