首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
刘庆忠  胡福民 《天文学报》1995,36(3):294-300,T001
本文分析了NOAA6361活动区中的一些现象,发现该活动区在衰亡阶段经历了两次同极性黑子的复合过程,复合后的黑子本影间均有光桥存在,观测结果倾向于支持Parker1979年提出的黑子多磁流管模型。14日复合后的黑子本影还顺时针方向旋转了约70度角,从半影纤维的同样顺时针旋转可以认为:该黑子的半影磁场并非是普遍认为的简单的本影磁场的发散部分。我们还观测到另外两个比较有趣的现象:①δ黑子中的p极性黑子  相似文献   

2.
本文对8个活动区极性反转线(中性线)附近黑子半影纤维的形态进行了分析得出:1)具有强δ磁结构的活动区,穿过主要异极性黑子间的中性线近旁半影纤维或多或少地与中性线平行(交角小于30°),有关黑子半影呈旋涡形态;2)由新浮现发展形成的δ结构区,异级黑子在大黑子边缘或与大.黑子本影之间有一段距离,中性线两边的半影纤维有序排列,走向与中性线斜交,有关黑子呈弱的旋涡形态。3)对于较稳定的极群,N、S极性间的宽窄不一的半影稀疏区,中性线沿该区经过,两旁半影松散齿状,走向与中性线大体垂直,相反极性本影间距较远。  相似文献   

3.
磁极性反转线附近黑子半影纤维的形态   总被引:3,自引:3,他引:0  
本文对8个活动区极性反转线附近黑子半影纤维的形态进行了分析得出:1)具有强δ磁结构的活动区,穿过主要异极性黑子间的中性线近旁半影纤维或多或少地与中性线平行,有关黑子半影呈肇涡形态;2)由新浮现发展形成的δ结构区,异级黑子在大黑子边缘或与大黑子本影之间有一段距离,中性线两边的半影纤维有序排列,走向与中性线斜交,有关黑子呈弱的施  相似文献   

4.
利用Hinode卫星观测的单色像和磁图,对出现在黑子半影内的35对偶极运动磁特征进行形态特征、运动速度以及低层太阳大气响应3方面的研究,得出以下结论:(1)偶极运动磁特征正负两极成对出现在黑子半影较垂直的磁场之间并向着半影外边界运动,间接验证了偶极运动磁特征起源于黑子半影水平磁场,在2-8小时的时间间隔内,同一位置上会反复出现形态特征和运动速度相似的偶极运动磁特征,为海蛇状磁力线模型提供了证据支持. (2)光球和色球在偶极运动磁特征向外运动过程中会出现增亮,说明偶极运动磁特征会加热中低层太阳大气.(3)偶极运动磁特征的出现位置和半影磁场结构分布符合非梳子状黑子半影结构特征.  相似文献   

5.
本文从无半影的黑子成长为带半影的黑子伴随着磁场强度增强和延伸运动这个观测事实出发,通过MHD数值模拟,证明了:(1)对流层内黑子中涡旋流动的自然形成;(2)仅在黑子表面附近磁矢才急速向外移动,最终形成我们观测到的半影磁场位形;(3)光球之上由于β迅速减少,这么小的延伸速度(0.2公里/秒)仅在β~1的光球区200公里厚的层里使磁矢有效地旋转,在约几小时至一天量级时间内将近似垂直的本影磁场向水平方向旋转,形成Osherovich所期的ReturnFlux磁位形,将注入日冕空间的本影主磁流同在色球和光球内就返回的半影磁流自然地划分开来.  相似文献   

6.
通过对1972年8月太阳大活动区九个耀斑(包括它全部2级以上大耀斑)的形态和黑子精细结构形态的相关分析,导致以下结论:1.8月2日0355UT本活动区第一次大耀斑的爆发与光球黑子形态变化在时间上和空间位置上有一定的相关性。2.九个耀斑在暗条两侧的初始亮点及其主要发展形态与“O”和“B”黑子的旋涡结构有着密切的相关性。3.耀斑的亮带与色球暗条(它由平行的小纤维组成)、O黑子东面的蛇形半影长纤维、以及H_(11)=O线的走向的一致性,可以看作耀斑爆发沿着太阳表面水平磁场传播的形态表现。  相似文献   

7.
根据Marshall空间飞行中心(MSFC)太阳天文台的矢量磁场测量和云南天文台的黑子细节照相资料,作者们详细研究了1986年2月初太阳大活动区(AR4711)的形态和演化。主要结论如下: i)几乎在活动区中每处地方,相距五小时观测到横向磁场排列方向和黑子半影纤维形态之间存在良好的相似性。 ii)利用文[4]的方法,推断了本活动区强的垂直电流源和强的水平电流渠道。 iii)与1972年8月初著名的太阳活动区(McMath 11976)相类似,沿老活动区的中性线的新浮磁通管的两足点(偶极黑子)的分离运动导致了一个密集四极磁结构的形成。 iv)新浮磁通管似乎是本活动区最强的电流系统。 上述结论将为进一步研究本区电流/磁场环系的演化及其与耀斑活动的关系提供一个基础数据。  相似文献   

8.
1970年初至1972年底云南天文台的黑子细节照相资料的初步统计表明:(1)具有持续的黑子半影纤维旋涡形态历史的活动区有较高的耀斑爆发频数,平均多达55%以上.(2)它们与伴随较大地球效应的高能量耀斑有密切的相关性,达84%。(3)其中90%左右的高能耀斑发生在旋涡黑子出现以后,平均落后3.8天,反映了两个现象之间可能存在着因果联系.这三点结论都有利于磁场扭结不稳定性的耀斑理论.  相似文献   

9.
本文对1988年12月中旬Boulder AR5278(云台编号88374)活动区的形态、特点及黑子间的相互作用作了描述和初步分析。结果表明:在本活动区过日面期间,前导黑子半影纤维呈现较为明显的剪切排列,磁场的相互作用以及黑子沿中性线分离、旋转运动;主要黑子部位,磁轴近于垂直赤道;在群体内,新磁流浮现并与靠近的另一黑子群异极黑子靠扰,联接构成一体。这些特征与本活动区产生的高能事件有密切关系。  相似文献   

10.
本文利用太阳活动区强磁场的扫描照像资料计算出总磁场和纵向磁场强度,再推出横场强度值,结合黑子半影的形态定出横场的方向,从而推算黑子区域的矢量磁场。这种综合测定法的优点是只需要简单的观测设备,使用计算机归算资料,就能很容易地得到矢量磁图。这种方法的缺点是所得的矢量磁场仅限于黑子区域。但是由于多数的太阳耀斑的触发点都发生在结构复杂的黑子区域内,因此用本方法得到的矢量磁图仍然是很有意义的。作为一个例子,我们对Hale No.17906(YN No.81547)黑子群的矢量磁场进行了详细的计算。  相似文献   

11.
Unstable pertubation modes exist in the magnetic field of penumbral electric current and I think the penumbral filaments are formed from the development of such modes. Under the short wave approximation the non-adiabatic dispersion equation is solved in the radial and transverse directions of the sunspot. From the condition of instability the length and width of the penumbral filament can be evaluated and it is found that the filament mode is static in the direction of the length and is non-moving in the direction of the width, that the penumbral filaments are a feature of the sunspot magnetic flow under gravity and that the presence of the filaments implies the existence of a twisted magnetic field.  相似文献   

12.
Zhou Daoqi 《Solar physics》1993,147(2):225-239
In this paper we suggest that penumbral filaments are a phenomenon of magnetohydrodynamic instability, developed in a stable and uniform magnetic field of sunspots during a dissipation process. We have solved local magnetohydrodynamic disturbance equations and have obtained the necessary condition for filament instability mode, that the ratio of filament length to width must be larger than the ratio of Alfvén speed to sound speed. We have also obtained correlations between two fluctuations from their phase difference. Although there are two correlations between the fluctuation of temperature (or filament intensity) and (1) the fluctuation of magnetic field, and (2) the fluctuation of the flow during the phases of developing and dissipating of the filament, we cannot distinguish whether the correlation is associated with the light filament or dark filament and we cannot decide whether the phase difference is 0° or 180° from tg() = 0. However, we can make a judgment: if the correlation is associated with a light filament during its development phase, it will be associated with a dark filament during its dissipation phase, andvice versa. In addition, there are no correlations between the fluctuations mentioned above for a stable filament, because the phase difference of the filament is changing with time.The phase differences of filaments are related to the existence of a gravitational field.  相似文献   

13.
In this paper, the energy storage for a spotless two-ribbon flare is discussed with reference to the morphology of the chromospheric fibrils surrounding a filament prior to the flare. Also, on the basis of the Kippenhahn-Schluter model of filaments, we discuss the instability of magnetic structure in these filaments. We found that once the gradient of the magnetic field or the curvature of the magnetic “trough” exceeds certain critical value, the Rayleigh-Taylor instability will be triggered off, leading to the sudden disappearance (Disparition Brusque) of the filament. At the same time, a neutral current sheet will be formed in the field with magnetic flux concentrated on both sides of the filament. Rapid reconnection of the field lines then lead to the onset of a two-ribbon flare.  相似文献   

14.
B. Ravindra 《Solar physics》2006,237(2):297-319
A time sequence of high-resolution SOHO/MDI magnetograms, Dopplergrams, and continuum images is used to study the moving magnetic features (MMFs) in and out of penumbral filaments. Precursors of MMFs have been observed inside the penumbral filaments. One hundred and fifteen out of 127 well-observed individual MMFs in the moat of two sunspots have been identified to have precursors at an average distance of 4″ inside the penumbral filaments. The velocity of these precursors is small inside the penumbral filaments and becomes large once the MMFs cross the outer penumbra. The paths followed by the MMFs exhibit large fluctuations in their magnetic field strength values, with an additional hike in the fluctuations near the outer penumbra. It is also observed that the path followed by the MMFs appear as a cluster of fibrils which could be traced back inside the penumbra. The appearance of MMFs and their azimuthal velocity is position and time dependent. Electronic Supplementary Material Electronic Supplementary Material is available for this article at  相似文献   

15.
Spectropolarimetric observations of a sunspot were carried out with the Tenerife Infrared Polarimeter at Observatorio del Teide, Tenerife, Spain. Maps of the physical parameters were obtained from an inversion of the Stokes profiles observed in the infrared Fe I line at 15648 Å The regular sunspot consisted of a light bridge which separated the two umbral cores of the same polarity. One of the arms of the light bridge formed an extension of a penumbral filament which comprised weak and highly inclined magnetic fields. In addition, the Stokes V profiles in this filament had an opposite sign as the sunspot and some resembled Stokes Q or U. This penumbral filament terminated abruptly into another at the edge of the sunspot, where the latter was relatively vertical by about 30°. Chromospheric Hα and He II 304 Å filtergrams revealed three superpenumbral fibrils on the limb‐side of the sunspot, in which one fibril extended into the sunspot and was oriented along the highly inclined penumbral counterpart of the light bridge. An intense, elongated brightening was observed along this fibril that was co‐spatial with the intersecting penumbral filaments in the photosphere. Our results suggest that the disruption in the sunspot magnetic field at the location of the light bridge could be the source of reconnection that led to the intense chromospheric brightening and facilitated the supply of cool material in maintaining the overlying superpenumbral fibrils. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A filament is a cool, dense structure suspended in the solar corona. The eruption of a filament is often associated with a coronal mass ejection(CME), which has an adverse effect on space weather. Hence,research on filaments has attracted much attention in the recent past. The tilt angle of active region(AR)magnetic bipoles is a crucial parameter in the context of the solar dynamo, which governs the conversion efficiency of the toroidal magnetic field to poloidal magnetic field. Filaments always form over polarity inversion lines(PILs), so the study of tilt angles for these filaments can provide valuable information about generation of a magnetic field in the Sun. We investigate the tilt angles of filaments and other properties using McIntosh Archive data. We fit a straight line to each filament to estimate its tilt angle. We examine the variation of mean tilt angle with time. The latitude distribution of positive tilt angle filaments and negative tilt angle filaments reveals that there is a dominance of positive tilt angle filaments in the southern hemisphere and negative tilt angle filaments dominate in the northern hemisphere. We study the variation of the mean tilt angle for low and high latitudes separately. Investigations of temporal variation with filament number indicate that total filament number and low latitude filament number vary cyclically, in phase with the solar cycle. There are fewer filaments at high latitudes and they also show a cyclic pattern in temporal variation. We also study the north-south asymmetry of filaments with different latitude criteria.  相似文献   

17.
The intensity of individual penumbral filaments has recently been measured at the Pic-du-Midi Observatory as well as from observations obtained during the third flight of the Soviet Stratospheric Solar Station. We have used the results of these measurements to calculate the corresponding average penumbral intensity as function of wavelength. The calculated average intensity is compared with the average intensity observed at the Oslo Solar Observatory. The Pic-du-Midi observations are supported by this comparison. The run of temperature versus optical depth is given for bright and dark penumbral filaments.The variation of gas pressure with geometrical depth is discussed. It is suggested that the magnetic field direction has a different variation with depth in bright and dark filaments.  相似文献   

18.
Martin  Sara F. 《Solar physics》1998,182(1):107-137
Observational conditions for the formation and maintenance of filaments are reviewed since 1989 in the light of recent findings on their structure, chirality, inferred magnetic topology, and mass flows. Recent observations confirm the necessary conditions previously cited: (1) their location at a boundary between opposite-polarity magnetic fields (2) a system of overlying coronal loops, (3) a magnetically-defined channel beneath, (4) the convergence of the opposite-polarity network magnetic fields towards their common boundary within the channel and (5) cancellation of magnetic flux at the common polarity boundary. Evidence is put forth for three additional conditions associated with fully developed filaments: (A) field-aligned mass flows parallel with their fine structure (B) a multi-polar background source of small-scale magnetic fields necessary for the formation of the filament barbs and (C) a handedness property known as chirality which requires them to be either of two types, dextral or sinistral. One-to-one relationships have been established between the chirality of filaments and the chirality of their filament channels and overlying coronal arcades. These findings reinforce earlier evidence that every filament magnetic field is separate from the magnetic field of the overlying arcade but both are parts of a larger magnetic field system. The larger system has at least quadrupolar footprints in the photosphere and includes the filament channel and subphotospheric magnetic fields, This ‘systems’ view of filaments and their environment enables new perspectives on why arcades and channels are invariable conditions for their existence. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005026814076  相似文献   

19.
The instability of a linearly-polarised electromagnetic ordinary mode in counterrotating plasmas and propagating perpendicular to a uniform magnetic field caused by a counterstreaming of electrons along the latter is studied using a cold-plasma model. It is found that: (i) In the presence of either a streaming or a rotation or both, the ordinary-wave propagation is possible even for frequencies less than the plasma frequency; (ii) the Coriolis forces like the applied magnetic field stabilise the ordinary modes.  相似文献   

20.
The 180-degree ambiguity in magnetic field direction along polarity reversal boundaries can be resolved often and reliably by the chiral method. The chiral method requires (1) identification of the chirality of at least one solar feature related to a polarity reversal boundary along which the field direction is sought and (2) knowledge of the polarity of the network magnetic field on at least one side of the polarity reversal boundary. In the context of the Sun, chirality is an observable signature of the handedness of the magnetic field of a solar feature. We concentrate on how to determine magnetic field direction from chirality definitions and illustrate the technique in eight examples. The examples cover the spectrum of polarity boundaries associated with filament channels and filaments ranging from those connected with active regions to those on the quiet Sun. The applicability of the chiral method to all categories of filaments supports the view that active region filaments and quiescent filaments are the extreme ends in a continuous spectrum of filaments. The chiral method is almost universally applicable because many types of solar features that reveal chirality are now readily seen in solar images accessible over the World Wide Web; also there are clear differences between left-handed and right-handed solar structures that can be identified in both high- and low-resolution data although high-resolution images are almost always preferable. In addition to filaments and filament channels, chirality is identifiable in coronal loop systems, flare loop systems, sigmoids, some sunspots, and some erupting prominences. Features other than filament channels and filaments can be used to resolve the 180-degree ambiguity because there is a one-to-one relationship between the chiralities of all features associated with a given polarity reversal boundary. Y. Lin is now at the Institute of Theoretical Astrophysics, University of Oslo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号