首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequences of magnetostatic equilibria can often be used to model the quasi-static pre-eruptive energy storage phase of eruptive phenomena in e.g. Earth's magnetosphere or the solar corona. During these phases the systems evolve only due to slow changes in their environment, being practically in equilibrium on large scales. The eruption onset would then be identified with a bifurcation or catastrophe point in the solution diagram. Different energy storage mechanisms can be studied by different parameterizations of e.g. the boundary conditions. Also from the more fundamental point-of-view of the theory of dynamical systems, studying the possible stationary states and the bifurcation properties of plasma systems should be the first step towards a more thorough understanding of their full dynamical behaviour. In any case one will have to solve highly non-linear partial differential equations with the possibility of the existence of multiple solutions (or of none at all) for a given set of boundary conditions. Such problems can, in general, only be solved numerically. The most appropriate class of numerical algorithms for this type of problem are continuation methods which can calculate complete solution branches and detect bifurcation points. In this work a numerical bifurcation code based on a continuation method is presented. In addition to solving the non-linear magnetohydrostatic equations, the code can check a sufficient linear stability criterion for each solution. Some preliminary results for simple magnetohydrostatic equilibria are presented and potential future applications are discussed.  相似文献   

2.
Abstract

The dynamic behavior of baroclinic point vortices in two-layer quasi-geostrophic flow provides a compact model for studying the transport of heat in a variety of geophysical flows including recent heton models for open ocean convection as a response to spatially localized intense surface cooling. In such heton models, the exchange of heat with the region external to the compact cooling region reaches a statistical equilibrium through the propagation of tilted heton clusters. Such tilted heton clusters are aggregates of cyclonic vortices in the upper layer and anti-cyclonic vortices in the lower layer which collectively propagate almost as an elementary tilted heton pair even though the individual vortices undergo shifts in their relative locations. One main result in this paper is a mathematical theorem demonstrating the existence of large families of long-lived propagating heton clusters for the two-layer model in a fashion compatible to a remarkable degree with the earlier numerical simulations. Two-layer quasi-geostrophic flow is an idealization of coupled surface/interior quasi-geostrophic flow. The second family of results in this paper involves the systematic development of Hamiltonian point vortex dynamics for coupled surface/interior QG with an emphasis on propagating solutions that transport heat. These are novel vortex systems of mixed species where surface heat particles interact with quasi-geostrophic point vortices. The variety of elementary two-vortex exact solutions that transport heat include two surface heat particles of opposite strength, tilted pairs of a surface heat particle coupled to an interior vortex of opposite strength and two interior tilted vortices of opposite strength at different depths. The propagation speeds of the tilted elementary hetons in the coupled surface/interior QG model are compared and contrasted with those in the simpler two-layer heton models. Finally, mathematical theorems are presented for the existence of large families of propagating long-lived tilted heton clusters for point vortex solutions in coupled surface/interior QG flow.  相似文献   

3.
The dynamics of finite-amplitude bed forms in a tidal channel is studied with the use of an idealized morphodynamic model. The latter is based on depth-averaged equations for the tidal flow over a sandy bottom. The model considers phenomena on spatial scales of the order of the tidal excursion length. Transport of sediment mainly takes place as suspended load. The reference state of this model is characterized by a spatially uniform M2 tidal current over a fixed horizontal bed. The temporal evolution of deviations from this reference state is governed by amplitude equations: these are a set of non-linear equations that describe the temporal evolution of bed forms. These equations are used to obtain new morphodynamic equilibria which may be either static or time-periodic. Several of these bottom profiles show strong similarity with the tidal bars that are observed in natural estuaries. The dependence of the equilibrium solutions on the value of bottom friction and channel width is investigated systematically. For narrow channels (width small compared to the tidal excursion length) stable static equilibria exist if bottom friction is slightly larger than rcr. For channel widths more comparable to the tidal excursion length, multiple stable steady states may exist for bottom friction parameter values below rcr. Regardless of channel width, stable time-periodic equilibria seem to emerge as the bottom friction is increased.Responsible Editor: Jens Kappenberg  相似文献   

4.
A computational model describing the two-dimensional, turbulent mixing of a single jet of exhaust gas from aircraft engines with the ambient atmosphere is presented. The underlying assumptions and governing equations are examined and supplemented by a discussion of analytical solutions. As an application, the jet dynamics of a B747-400 aircraft engine in cruise and its dependence on key parameters is investigated in detail. The computer code for this dynamical model is computationally fast and can easily be coupled to complex chemical and microphysical models in order to perform comprehensive studies of atmospheric effects from aircraft exhaust emissions in the jet regime.  相似文献   

5.
We present a systematic analysis of the dynamical behavior introduced by fault zone heterogeneities, using a simple mass-spring model with velocity-weakening friction. The model consists of two sliding blocks coupled to each other and to a constant velocity driver by clastic springs. The state of this system can be characterized by the positions of the two blocks relative to the driver. Symmetry stabilizes the system and generates only cyclic behavior. For an asymmetric system where the frictional forces for the two blocks are not equal, the solutions exhibit chaotic behavior. The transition from stable cyclic behavior to chaos is characterized by the period-doubling route to chaos. Lyapunov exponents are computed to quantify the deterministic chaos and to locate the onset of the chaotic evolution in parameter space. In many examples of deterministic chaos, chaotic behavior of a low-order system implies chaos in similar higher order systems. Thus, our results provide substantial evidence that crustal deformation is an example of deterministic chaos.  相似文献   

6.
The capacity spectrum method (CSM), capable of predicting the demands of forces and deformations of the inelastic system, has been applied in the ATC and FEMA guidelines. The deformation of an inelastic system is solved iteratively by using the equivalent linearization for CSM, which actually forms a nonlinear map or discrete dynamical system. However, the iterative procedure of CSM did not converge for some inelastic systems, and the complicated dynamical phenomena for the solutions such as the periodic oscillation, period-doubling bifurcation and chaos may occur, which were shown in the bifurcation plots of iterative map of the simplified CSM in ATC40 and FEMA440. This paper presents a novel method to analyze and control the non-convergence of the iterative procedure of CSM from the perspective of chaotic dynamics. The Lyapunov exponent of the dynamical system is employed to identify the evolutional state and stability of solutions. Finally, the stability transformation method as a simple, versatile and effective chaos feedback control approach is applied to control the convergent failure of CSM in ATC40 and FEMA440. The numerical results illustrate that the stability transformation method can capture the desired fixed points of the dynamical system and obtain the stable convergent solutions of CSM.  相似文献   

7.
8.
Nonhydrostatic Atmospheric Normal Modes on Beta-Planes   总被引:1,自引:0,他引:1  
--To facilitate the understanding of nonhydrostatic effect in global and regional nonhydrostatic models, the normal modes of a nonhydrostatic, stratified, and compressible atmosphere are studied using Cartesian coordinates on midlatitude and equatorial #-planes. The dynamical equations without forcing and dissipation are linearized around the basic state at rest, and solved by using the method of separation of variables. An eigenvalue-eigenfunction problem is formulated, consisting of the horizontal and vertical structure equations with suitable boundary conditions. The wave frequency and the separation parameter, referred to as "equivalent height," appear in both the horizontal and vertical characteristic equations as a coupled problem, unlike the hydrostatic case. Therefore, the nonhydrostatic equivalent height depends not only on the vertical modal scale, as in the hydrostatic case, but also on the zonal and meridional modal scales. Numerical resu lts on the dispersion relations are presented for an isothermal atmosphere. Three kinds of normal modes, namely acoustic, gravity, and Rossby modes, are solved and compared with the corresponding global solutions. Nonhydrostatic effects are studied in terms of normal modes in a wide range of wavelengths from small to planetary scales. It is demonstrated that Rossby modes are hardly affected by nonhydrostatic effects regardless of wavelengths. However, nonhydrostatic effects on gravity modes become significant for smaller horizontal and deeper vertical scales of motion. The equivalent height plays a particularly important role in evaluating nonhydrostatic effects of normal modes on the equatorial #-plane, because the equivalent height appears in the scaling of meridional distance variable of the eigenfunctions. The implementation of nonhydrostatic normal mode analysis on high-resolution numerical modeling is also discussed.  相似文献   

9.
本文利用MHD二维不可压模式,研究了地球磁层顶边界区剪切流引起的Kelvin-Helmholtz(K-H)不稳定性问题,得到了一个新的非线性微分方程组.理论和数值分析表明:该问题的非线性演化对初值非常敏感,而且在雷诺数和磁雷诺数给定的条件下,Alfven马赫数(MA)对K-H不稳定性的非线性演化起决定性作用.这组方程蕴含几个吸引子,如不动点,极限环和奇异吸引子等,这体现了磁层顶非线性系统的复杂性.文中还发现背景磁场在磁层顶K-H不稳定性的非线性演化过程中起很重要的作用.  相似文献   

10.
Distributed parameter filtering theory is employed for estimating the state variables and associated error covariances of a dynamical distributed system under highly random tidal and meteorological influences. The stochastic-deterministic mathematical model of the physical system under study consists of the shallow water equations described by the momentum and continuity equations in which the external forces such as Coriolis force, wind friction, and atmospheric pressure are considered. White Gaussian noises in the system and measurement equations are used to account for the inherent stochasticity of the system. By using an optimal distributed parameter filter, the information provided by the stochastic dynamical model and the noisy measurements taken from the actual system are combined to obtain an optimal estimate of the state of the system, which in turn is used as the initial condition for the prediction procedure. The approach followed here has numerical approximation carried out at the end, which means that the numerical discretization is performed in the filtering equations, and not in the equations modelling the system. Therefore, the continuous distributed nature of the original system is maintained as long as possible and the propagation of modelling errors in the problem is minimized. The appropriateness of the distributed parameter filter is demonstrated in an application involving the prediction of storm surges in the North Sea. The results confirm excellent filter performance with considerable improvement with respect to the deterministic prediction.  相似文献   

11.
Distributed parameter filtering theory is employed for estimating the state variables and associated error covariances of a dynamical distributed system under highly random tidal and meteorological influences. The stochastic-deterministic mathematical model of the physical system under study consists of the shallow water equations described by the momentum and continuity equations in which the external forces such as Coriolis force, wind friction, and atmospheric pressure are considered. White Gaussian noises in the system and measurement equations are used to account for the inherent stochasticity of the system. By using an optimal distributed parameter filter, the information provided by the stochastic dynamical model and the noisy measurements taken from the actual system are combined to obtain an optimal estimate of the state of the system, which in turn is used as the initial condition for the prediction procedure. The approach followed here has numerical approximation carried out at the end, which means that the numerical discretization is performed in the filtering equations, and not in the equations modelling the system. Therefore, the continuous distributed nature of the original system is maintained as long as possible and the propagation of modelling errors in the problem is minimized. The appropriateness of the distributed parameter filter is demonstrated in an application involving the prediction of storm surges in the North Sea. The results confirm excellent filter performance with considerable improvement with respect to the deterministic prediction.  相似文献   

12.
Abstract

Under consideration are interfaces between two media of different densities and which arise from the interaction between the Mth and Nth harmonics of the motion where 1 ≤ N < M. By means of the method of multiple scales in both space and time a pair of nonlinear coupled partial differential equations is derived which model the progression of the interface. The equations contain a detuning parameter [sgrave] which allow imperfections in the resonance to be taken into account. Stokes-type sinusoidal solutions to the equations were sought. It was found that solutions exist for all values of the interaction ratio M/N. In some situations interfaces exist at both exact and near resonance; while in others they are destroyed by amplifications in the detuning. In yet others, a quantity of detuning is actually necessary for the profiles to exist. In all cases, even when the parameters are fixed, a very large class of interface profiles is possible. Finally, the stability of the profiles is studied. It is found that some are quite stable, even to perturbations with wavenumbers close to the main flow.  相似文献   

13.
A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffusive–reactive partial differential equations is formulated for two-layer conceptual model of aerobic–anaerobic sediments. Oxidation reactions are modeled as first-order rate processes and nitrate is assumed to be consumed entirely in the anoxic portion of the sediments. The sediments are delineated into a thin oxygenated surface layer whose thickness is equal to the oxygen penetration depth, and a lower, but much thicker anoxic layer. The sediments are separated from the overlying water column by a relatively thin boundary layer through which mass transfer is diffusion controlled. Transient solutions are derived using the method of Laplace transform and Green’s function, which relate pore-water concentrations of the constituents to their concentrations in the bulk water and to the flux of decomposable settling organic matter. Steady-state pore-water concentrations are also obtained including expressions for the extent of methane saturation zone and methane gas flux. A relationship relating the sediment oxygen demand (SOD) to bulk water oxygen is derived using the two-film concept, which in combination with the depth-integrated solutions forms the basis for predicting the extent of oxygen penetration in the sediment. Iterative procedure and simplification thereof are proposed to estimate the extent of methane saturation zone and thickness of the aerobic layer as functions of time. Sensitivity of steady-state solutions to key parameters illustrates sediment processes interactions and synergistic effects. Simulations indicate that for a relatively thin diffusive boundary layer, d, oxygen uptake is limited by biochemical processes inside the sediments, whereas for a thick boundary layer oxygen transfer through the diffusive boundary layer is limiting. The results show an almost linear relationship between steady-state sediment oxygen demand and bulk water oxygen. For small d methane and nitrogen fluxes are sediment controlled, whereas for large d they are controlled by diffusional transfer through the boundary layer. It is shown that the two-layer model solution converges to the one-layer model (anaerobic layer) solution as the thickness of the oxygenated layer approaches zero, and that the transient solutions approach asymptotically their corresponding steady-state solutions.  相似文献   

14.
The purpose of this paper was to study aerosol particles in the Northwestern region of Mexico (NWM) through Aerosol Optical Thickness (AOT) parameter in the atmosphere. This parameter represents one of the extinction coefficients of solar radiation and the rate of suspended particles in the atmosphere. For determination of AOT, we considered the use of remote sensors outside of the atmosphere. In particular, Moderate Resolution Imaging Spectroradiometer (MODIS) which can measure the atmospheric AOT thickness. Data from the MODIS sensor must be validated before they are considered reliable. For this task, we required surface measurements to obtain a correlation with the data acquired with the remote radiometer. The paper describes the validation process performed for data obtained with MODIS through measurements provided by an AErosol RObotic NETwork (AERONET) photometer located in the city of Hermosillo, Sonora, NWM. Additionally, we carried out a temporal analysis based on the behavior of the AOT graphics and spatial analysis supported in maps with sufficient information.  相似文献   

15.
The vertical wave propagation in an inhomogeneous compressible atmosphere is studied in the framework of a linear theory. Under specific conditions imposed on atmospheric parameters, solutions can be found in the form of travelling waves with variable amplitudes and wave numbers that do not reflect in the atmosphere in spite of its strong inhomogeneity. Model representations for the sound speed have been found, for which waves can propagate in the atmosphere without reflection. A wave energy flux retains these reflectionless profiles, which confirms that energy can be transferred to high altitudes. The number of these model representations is fairly large, which makes it possible to approximate real vertical distributions of the sound speed in the Earth??s atmosphere using piecewise reflectionless profiles. The Earth??s standard atmosphere is shown to be well approximated by four reflectionless profiles with weak jumps in the sound speed gradient. It has been established that the Earth??s standard atmosphere is almost completely transparent for the considered vertical acoustic waves in a wide range of frequencies, which is confirmed by observational data and conclusions derived using numerical solutions of original equations.  相似文献   

16.
The equations for an electrically conducting fluid in cylindrical coordinates are linearized assuming that the inertial terms in the momentum equation can be ignored (small Rossby number), and that the ratio of the Elsasser number and magnetic Reynolds number is one. After these assumptions, the governing equations are linearized about an ambient solution which vanishes at the the equator. Upon assuming large Elsasser and magnetic Reynolds number, the solutions to the linearized equations are approximated by wave trains having very short wave length (relative to the core radius) but which vary slowly (on a scale of the core radius). The period of the waves is much longer than a day but much shorter than the period of the slow hydromagnetic oscillations. These waves are found to be trapped in a region about the equator and away from the axis of rotation. The waves break at a latitudinal wave region boundary, in the sense that the waves become exponentially large in a boundary layer, having as an exponent some positive power of the large azimuthal wave number. This behavior is amplified as the Elsasser number becomes smaller while still remaining relatively large. Waves in more Earth-like parameter regimes are discussed briefly.  相似文献   

17.
Abstract

Two upper bounding problems for thermal convection in a layer of fluid contained between perfectly conducting stress-free boundaries are treated numerically. Since the Euler equations resulting from this variational approach are simpler than the Navier-Stokes equations, they allow numerical calculations to be carried out economically to fairly large values of the Rayleigh number. The upper bounding problem formulated by Howard (1963), which yields a Nusselt number independent of Prandtl number, diverges from the correct behavior as the Rayleigh number increases. In hopes of coming closer to results of previous investigations of the Boussinesq equations of motion, a more restrictive upper bounding problem is formulated. For large Prandtl numbers the momentum equation is linearized and is used as an explicit side constraint on the variational problem, thereby forcing the solutions to more closely resemble the solutions of the Boussinesq equations. Numerical calculations at values of the Rayleigh number up to 1.5 × 105 indicate that the additional constraint decreases the upper bound on the Nusselt number; it appears that this upper bound differs by only a multiplicative factor from that calculated from solutions of the full equations of motion and may be a reasonable approximation for large Rayleigh numbers.  相似文献   

18.
The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.  相似文献   

19.
The dynamics of a stratified fluid contained in a rotating rectangular box is described in terms of the evolution of the lowest moments of its density and momentum fields. The first moment of the density field also gives the position of the fluids centre-of-mass. The resulting low-order model allows for fast assessment both of adopted parameterisations, as well as of particular values of parameters. In the ideal fluid limit (neglect of viscous and diffusive effects), in the absence of wind, the equations have a Hamiltonian structure that is integrable (non-integrable) in the absence (presence) of differential heating. In a non-rotating convective regime, dynamically rich behaviour and strong dependence on the single (lumped) parameter are established. For small values of this parameter, in a self-similar regime, further reduction to an explicit map is discussed in an Appendix. Introducing rotation in a nearly geostrophic regime leads through a Hopf bifurcation to a limit cycle, and under the influence of wind and salt to multiple equilibria and chaos, respectively.  相似文献   

20.
范家参 《地震研究》2002,25(1):48-52
地壳由半无限大的基岩上一层厚度为H^-的表土层组成,入射地震波为垂直的SH波,产生水平地面运动。当浅源大地震发生时,在极震区以外行波传播产生地面运动将使地壳介质有非线性的有限弹性变形。用小参数摄动法使非线性控制方程为线性化的小参数各阶控制方程,得出头两阶线性控制方程的解析解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号