首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
P. B. Zuo  F. S. Wei  X. S. Feng  F. Yang 《Solar physics》2007,242(1-2):167-185
The magnetic cloud boundary layer (BL) is a disturbance structure that is located between the magnetic cloud and the ambient solar wind. In this study, we statistically analyze the characteristics of the magnetic field B z component (in GSM coordinates) inside the magnetic cloud boundary layers as well as the relationship between the magnetic cloud boundary layers and the magnetospheric substorms based on 35 typical BLs observed by Wind from 1995 to 2006. It is found that the magnetic field B z components are more turbulent inside the BLs than those inside the adjacent sheath regions and the magnetic clouds. The substorm onsets are identified by the auroral breakups that are the most reliable substorm indicators by using the Polar UVI image data. The UVI data are available only for 17 BLs. The statistical analysis indicated that 9 of the 17 events triggered the substorms when BLs crossed the magnetosphere and that the southward field in the adjacent sheath region is a necessary condition for these triggering events. In addition, the SF-type BLs, which are named by their features of the B z components inside the BLs and adjacent sheath regions, can easily trigger the substorms during their passage of the magnetosphere. SF-type BLs are characterized by sustained strong southward magnetic fields persisting for at least 30 minutes in the adjacent sheath regions and at least one change in the polarity of the B z component inside the BL. In this study, 7 out of 8 such SF-type BL events triggered the substorm expansion phase, suggesting that the SF-type BLs are another important interplanetary disturbance source of substorms.  相似文献   

2.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   

3.
Influence of magnetic clouds on cosmic ray intensity variation   总被引:1,自引:0,他引:1  
The data from a high counting rate neutron monitor has been analysed to study the nature of galactic cosmic-ray transient modulation associated with three classes of magnetic clouds, i.e., clouds associated with shock, stream interface and cold magnetic enhancement.It is found that the decreases in cosmic-ray intensity which are associated with clouds preceded by a shock, are very high (Forbush-type) and these decreases start earlier than the arrival of the cloud at the Earth. From the study of the time profile of these decreases it is found that the onset time of a Forbush-type decrease produced by a shock-associated cloud starts nearly at the time of arrival of the shock front at the Earth and the recovery is almost complete within a week.The decreases in cosmic-ray intensity associated with clouds followed by a stream interface are smaller in magnitude and larger in duration. The depression starts on the day of the arrival of the cloud.The decreases associated with the third category of clouds, i.e., clouds associated with cold magnetic enhancement (a region in which plasma temperature is anomalously low and the magnetic field strength is enhanced) are of still smaller amplitude and duration. The decrease in this case starts on the day the cloud arrives at the Earth.It seems that the Forbush decrease modulating region consists of a shock front followed by a plasma sheath in which the field intensity is high and turbulent. The amplitude of decrease is related to the field magnitude and the speed of the cloud. Both shocked plasma and the magnetic cloud are influential in determining the time profile of these decreases. In our view it is not the magnetic field strength or the topology alone which is responsible for the cosmic-ray depression. The most likely additional effect is the increased degree of turbulence.  相似文献   

4.
Data of cosmic-ray intensity from the Calgary Super Neutron Monitor and interplanetary plasma and field data are divided into three groups corresponding to the magnetic clouds preceded by shocks, followed by interaction region and clouds without any such association, observed during the period 1967–1982. A superposed epoch analysis of these data, in addition to the field variance data, have been performed. The results suggest the hypothesis that the Forbush decreases are caused by the scattering of particles in the region of enhanced turbulence, observed during the passage of shocked plasma (i.e., sheath) between the shock front and the magnetic cloud.  相似文献   

5.
We review the current observational knowledge of the interstellar magnetic field within ∼150 pc ofthe Galactic center. We also discuss the various theoretical scenarios that have been put forward to explain the existing observations. Our critical overview leads to two important conclusions: (1) The interstellar magnetic field near the GC is approximately poloidal on average in the diffuse intercloud medium and approximately horizontal in dense interstellar clouds. (2) In the general intercloud medium, the field is relatively weak and probably close to equipartition with cosmic rays (B ∼ (6–20) μ G), but there exist a number of localized filaments where the field is much stronger (some filaments could possibly have B ≳ 1 mG). In dense interstellar clouds, the field is probably rather strong, with typical values ranging between a few 0.1 mG and a few mG (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The role of the magnetic field in the confinenment or compression of interstellar gas clouds is reconsidered. The virial theorem for an isolated magnetized cloud in the presence of distant magnetic sources is reformulated in terms of moments of the internal and external currents, and an equilibrium condition is derived. This condition is applied to the interaction between isolated clouds for the simple- and artificial-case in which the field of each cloud is a dipole. With the simplest of statistical assumptions, the probability of any given cloud being compressed is calculated as 10%, the magnetic field acting as a medium which transmits the kinetic pressure between clouds. Even when compression occurs the magnetic pressure 1/2B 2 may decrease on leaving the cloud surface.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

7.
The physical processes responsible for transient cosmic-ray decreases have been investigated for two types of interplanetary shock events associated with helium enhancement (He-shocks) and those not associated with helium enhancement (non-He-shocks). The Calgary cosmic-ray neutron monitor data and the interplanetary field data have been subjected to a superposed-epoch Chree analysis. The difference in the profiles of the cosmic-ray intensity have been compared with the interplanetary field data and its variance. It is suggested that the turbulence sheath following the shock front is very effective and of major importance for producing cosmic-ray decreases. A simple model has been proposed to explain the observations which show that a Forbush decrease modulating region consists of a shock front associated with a plasma sheath in which the magnetic field is turbulent and the sheath, in turn, is followed by an ejected plasma cloud having ordered structure and high magnetic field strength.  相似文献   

8.
Current theoretical models for what drives star formation (especially low-mass star formation) are: (1) magnetic support of self-gravitating clouds with ambipolar diffusion removing support in cores and triggering collapse and (2) compressible turbulence forming self-gravitating clumps that collapse as soon as the turbulent cascade produces insufficient turbulent support. Observations of magnetic fields can distinguish between these two models because of different predictions in three areas: (1) magnetic field morphology, (2) the scaling of field strength with density and non-thermal velocities, and (3) the mass to magnetic flux ratio, M/Φ. We first discuss the techniques and limitations of methods for observing magnetic fields in star formation regions, then describe results for the L1544 prestellar core as an exemplar of the observational results. Application of the three tests leads to the following conclusions. The observational data show that both magnetic fields and turbulence are important in molecular cloud physics. Field lines are generally regular rather than chaotic, implying strong field strengths. But fields are not aligned with the minor axes of oblate spheroidal clouds, suggesting that turbulence is important. Field strengths appear to scale with non-thermal velocity widths, suggesting a significant turbulent support of clouds. Giant Molecular Clouds (GMCs) require mass accumulation over sufficiently large volumes that they would likely have an approximately critical M/Φ. Yet H I clouds are observed to be highly subcritical. If self-gravitating (molecular) clouds form with the subcritical M/Φ of H I clouds, the molecular clouds will be subcritical. However, the observations of molecular cloud cores suggest that they are approximately critical, with no direct evidence for subcritical molecular clouds or cloud envelopes. Hence, the observations remain inconclusive in deciding between the two extreme-case models of what drives star formation. What is needed to further advance our understanding of the role of magnetic fields in the star formation process are additional high sensitivity surveys of magnetic field strengths and other cloud properties in order to further refine the assessment of the importance of magnetic fields in molecular cores and envelopes.  相似文献   

9.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

10.
We present the results of a study of solar wind velocity and magnetic field correlation lengths over the last 35 years. The correlation length of the magnetic field magnitude λ |B| increases on average by a factor of two at solar maxima compared to solar minima. The correlation lengths of the components of the magnetic field lBXYZ\lambda_{B_{XYZ}} and of the velocity lVYZ\lambda_{V_{YZ}} do not show this change and have similar values, indicating a continual turbulent correlation length of around 1.4×106 km. We conclude that a linear relation between λ |B|, VB 2, and Kp suggests that the former is related to the total magnetic energy in the solar wind and an estimate of the average size of geoeffective structures, which is, in turn, proportional to VB 2. By looking at the distribution of daily correlation lengths we show that the solar minimum values of λ |B| correspond to the turbulent outer scale. A tail of larger λ |B| values is present at solar maximum causing the increase in mean value.  相似文献   

11.
A consistent account of plasma turbulence in magnetohydrodynamics equations describing transport processes across the magnetic field is presented. The structure of the perpendicular shock wave generated in the solar atmosphere, as a result of either local disturbance of the magnetic field or dense plasma cloud motion with a frozen-in magnetic field, has been investigated. The region of parameters in the solar atmosphere at which the electron-ion relative drift velocity u exceeds the electron thermal velocity V eand generation of radio emission becomes possible, has been determined. The plasma turbulence inside the front has been shown, under conditions of solar corona, not to cause the oscillation structure of shock front to break down. Under chromospheric conditions, the shock profile is aperiodical. Then, the condition u > Vecan be satisfied and shock waves having an Alfvén Mach number M which exceeds the critical value M c 3.3 for aperiodical shock waves can exist (Eselevich et al., 1971a). Arguments are given in favour of the fact that perpendicular shock waves are generated in the Sun's atmosphere when dense plasma clouds, with a frozen-in magnetic field, are expanded.  相似文献   

12.
W. Xie  H. Zhang  H. Wang 《Solar physics》2009,254(2):271-283
In this paper, we present a study of the correlation between the speed of flare ribbon separation and the magnetic flux density during the 10 April 2001 solar flare. The study includes the section of the neutral line containing the flare core and its peripheral area. This event shows clear two-ribbon structure and inhomogeneous magnetic fields along the ribbons, so the spatial correlation and distribution of the flare and magnetic parameters can be studied. A weak negative correlation is found between the ribbon separation speed (V r) and the longitudinal magnetic flux density (B z ). This correlation is the weakest around the peak of the flare. Spatially, the correlation is also weakest at the positions of the hard X-ray (HXR) sources. In addition, we estimate the magnetic reconnection rate (electric field strength in the reconnection region E rec) by combining the speed of flare ribbons and the longitudinal magnetic flux density. During flare evolution, the time profiles of the magnetic reconnection rate are similar to that of the ribbon separation speed, and the speeds of ribbon separation are relatively slow in the strong magnetic fields (i.e., V r is negatively correlated with B z ). However, along the flare ribbons, E rec fluctuates in a small range except near the HXR source. A localized enhancement of the reconnection rate corresponds to the position of the HXR source.  相似文献   

13.
Coronal mass ejections and high-speed streams from the Sun, and related structures formed and evolved in interplanetary space, i.e. interplanetary manifestations of CMEs (ICMEs) and stream interaction regions (SIRs)/corotating interaction regions (CIRs), are mainly responsible for geomagnetic disturbances in the Earth’s magnetic environment. However, the presence or absence of associated/finer structures of ICMEs (e.g., shock/sheath, magnetic cloud) and SIRs/CIRs (forward and reverse shocks, stream interface) might influence their geoeffectiveness as these features within large-scale structures of ICMEs and SIRs display different and varying plasma and field characteristics. In this work, we analyze the solar-wind plasma and field parameters (plasma velocity, density and pressure, magnetic field, its north-south component and electric field) together with geomagnetic activity parameters (kp and Dst), applying the method of superposed epoch analysis. By systematically changing the time of passage of different features as epochs, e.g. discontinuities/shocks, CMEs/magnetic clouds in ICMEs and discontinuities/forward shocks in SIRs/CIRs, we study the relative geoeffectiveness of not only the large-scale structures (ICMEs/SIRs/CIRs), but of their finer features also. We critically analyze the differences in geoeffectiveness due to different structures and features, with distinct plasma/field characteristics, and we utilize these results to understand the mechanism during their interaction with geospace.  相似文献   

14.
Measurements of the fluxtube field strength B and filling α in solar flares, active regions and faculae have been analyzed. To estimate the values of B, Stokes V peak separations of the Fe I 5247 Å and Fe I 5250 Å lines have been used. It was found that the value of B in an In-flare (˜ 1.1 kG) was slightly smaller than that in faculae (˜ 1.3 kG) and a non-flare active region (˜ 1.4kG). On the other hand, in a more power 2b-flare the value of B was in the range from. 1.1 kG (the start of the flare) to 1.55kG. (during the peak). Thus the values of the field strength of flares somewhat differ from those both of faculae and active regions. The magnetic filling factor is approximately equal in flares (0.2-0.40) and active regions (0.3) but several times larger as compared with faculae.  相似文献   

15.
Bravo  S.  Aguilar  E.  Blanco-Cano  X.  Stewart  G.A. 《Solar physics》1999,188(1):163-168
Among all the signatures of solar ejecta in interplanetary space, magnetic clouds are particularly interesting. We have shown that they are associated with solar mass ejections that involve not only coronal heights, but also chromospheric heights and so, they are almost always associated with low-altitude solar activity such as H flares or filament eruptions. As a magnetic cloud is a very large structure, and not all the ejecta found in the interplanetary medium are clouds, it is interesting to investigate the characteristics of the large-scale coronal magnetic structures in the regions where the activity leading to a cloud takes place. In this paper we use Hoeksema's potential field model of the solar magnetosphere to obtain the magnetic structure of the site of the solar events associated with 35 interplanetary magnetic clouds. The position of the related solar activity was determined from the location of the near-surface solar explosive events (flares and filament eruptions) associated with each cloud, obtained in our previous study. We find that the solar activity associated with interplanetary magnetic clouds occurs in regions of low-altitude, magnetically closed structures lying between higher helmets, or between the highest helmets and coronal holes, where the magnetic field lines are longitudinally oriented.  相似文献   

16.
Statistics in absorption 21-cm data show two main types of clouds at low galactic latitudes: dense small clouds, many of them with molecular cores, with dispersions σ≈1.5 km s−1 and large clouds forming the fine features of the spiral arms (the shingle like features) with a dispersion range α≈3–4 km s−1. Sizes and dispersions of both types of clouds are compatible with the Kolmogorov law of turbulence: σ∞d 1/3. The large clouds forming the shingle-like features can be considered as the largest clouds of a Kolmogorov spectrum (the initial vortices), or as the hydrodynamic features with minimum sizes in the Galaxy. In order to define hydrodynamic motions in the same sense as given by Ogrodnikov (1965) we use here the tensorial form of the Helmholtz theorem to obtain an approximation for the hydrodynamic motions depending on distances and seen from the local standard of rest:V r r. The intermediate range of sizes between turbulent motions and hydrodynamic motions is 100<d<300 pc which is also the range of sizes of the large clouds forming the fine features of the spiral arms. A classification on of motions in the Galaxy is postulated: (a) a basic rotation motion given by an smooth unperturbed curveΘ b (R) associated to the old disk population. (b) Systematic motions of the spiral arms. (c) Systematic motions in the fine structure of the arms. For scale sizes smaller than these fine features one has turbulent motions according to the Kolmogorov law. The densities and sizes of the turbulent clouds behave asn H d −2 in a range of sizes 7 pc<d<300 pc. The obtained gas densities of the clouds are confirmed with the dust densities from photometric studies. The conditions for gravitational binding of the clouds are analyzed. Factors as the geometry and the magnetic field within the clouds increases the critic densities for gravitational binding. When we consider these factors we find that the wide component clouds have densities below such a critical value. The narrow component clouds have densities similar or above the critical value; but the real fraction of collapsing clouds remains unknown as far as the factor of geometry and the inner magnetic field of each cloud are not determinated.  相似文献   

17.
This work deals with a CCD imaging study at optical and near‐infrared wavelength oftwo giant molecular clouds (plus a control field) in the southern region of the Large Magellanic Cloud, one ofwhich shows multiple signs of star formation, whereas the other does not. The observational data from VLT FORS2 (R band) and NTT SOFI (Ks band) have been analyzed to derive luminosity functions and color‐magnitude diagrams. The young stellar content of these two giant molecular clouds is compared and confirmed to be different, in the sense that the apparently “starless” cloud has so far formed only low‐luminosity, low‐mass stars (fainter than mKs ∽ 16.5 mag, not seen by 2MASS), while the other cloud has formed both faint low‐mass and luminous high‐mass stars. The surface density excess oflow‐luminosity stars (∽2 per square arcmin) in the “starless” cloud with respect to the control field is about 20% whereas the excess is about a factor of 3 in the known star‐forming cloud. The difference may be explained theoretically by the gravo‐turbulent evolution of giant molecular clouds, one being younger and less centrally concentrated than the other (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this paper we discuss the main-phase evolution of intense magnetic storms, associated with the passage of different interplanetary magnetic structures. It is shown that their evolution, driven by intense magnetic fields in the sheath region just behind interplanetary shocks, evolves faster (implying physically different magnetospheric configurations) than that associated with intense magnetic fields in the ejecta itself and in corotating streams. The estimated ring-current injection rate for the main phase of intense magnetic storms caused by sheath fields is ∼10 times greater than the estimated injection rate for N–S magnetic clouds. Based on these results, we propose storm-intensity criteria for several classes of the driving interplanetary structures. The time necessary to reach a Dst/SYM index threshold level is an important parameter for a space weather forecast.  相似文献   

19.
Our purpose is to examine the formation of different sheaths in rotating astroplasmas embedded in an ambient magnetic field. Sequel to our recent work (Das and Chakraborty in Astrophys. Space Sci., 2011) we remodeled our present study with the view to finding of robust sheath over the Earth’s Moon along with the formation of dust clouds therein. Based on using the pseudopotential analysis, a modified Sagdeev potential equation has been derived, which, in turns, quantifies the interaction of Coriolis force and magnetic field and to derive the different natures of sheath and dust atmosphere. The application of this result to the input numeric data of the lunar environment and dynamical behaviors of dust levitation has been studied. Our study finds that the dust particles having a spatial segregation within the sheath region form dust clouds in spaces.  相似文献   

20.
We review observations of the physical properties of the diffuse ISM HI components, namely the Cold and Warm Neutral Media (CNM and WNM). There is somewhat more WNM than CNM, and at least half of the WNM is not thermally stable. The CNM has typical turbulent Mach number 3. Magnetic fields in the CNM are not as large as expected from the classical flux-freezing argument; neither are magnetic fields always strong enough for the Alfven velocity to equal the turbulent velocity. Nevertheless, they are usually strong enough to put CNM clouds in the magnetically subcritical regime. We identify a probable new source of turbulence for the diffuse ISM. We discuss one very cold cloud that has considerable internal turbulence and, because of its extreme thinness ~0.05 pc, a turbulent crossing time of only ~5 × 104 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号