首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, we investigate the polarization property of the radiation amplified by astronomical masers in the presence of a strong magnetic field. Our model explicitly takes into account the broad-band nature of the radiation field and the interaction of the radiation with the maser transition   J = 1–0  . The amplification of different realizations of the background continuum radiation by the maser is directly simulated and the Stokes parameters of the radiation field are then obtained by averaging over the ensemble of emerging maser radiation. For isotropic pumping and partially saturated masers, we find that the maser radiation is linearly polarized in two representative cases where the magnetic field   B   makes an angle  θ= 30°  and  90°  to the maser axis. The linear polarization for maser radiation obtained in our simulations for both cases is in agreement with the results of the standard model. Furthermore, no instability during amplification is seen in our simulations. Therefore, we conclude that there is no problem with the previous numerical investigations of maser polarization in the unsaturated and partially saturated regime.  相似文献   

3.
We examine the radial motion of a material particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. This paper generalizes previous work which dealt with radial motion in the Thomson limit, where the radiation force is simply proportional to the radiative flux. In the general case the average time component of the 4-momentum transferred to the particle is not negligible compared with its rest mass. Consequently, we find that the frequency dependence of the radiation force owing to Compton scattering for highly energetic photons gives rise to an increase in the effective mass of the test particle. In this work we outline the effects of this frequency dependence and compare these with the results in the Thomson limit. We present the frequency dependent saturation velocity curves for a range of stellar luminosities and radiation frequencies and present the resulting phase-space diagrams corresponding to the radial test particle trajectories. In particular, the stable equilibrium points which exist in the Thomson limit are found to be absent in the general case.  相似文献   

4.
Strong magnetic fields modify particle motion in the curved space–time of spinning black holes and change the stability conditions of circular orbits. We study conditions for magnetocentrifugal jet launching from accretion discs around black holes, whereby large-scale black hole lines anchored in the disc may fling tenuous coronal gas outwards. For a Schwarzschild black hole, magnetocentrifugal launching requires that the poloidal component of magnetic fields makes an angle less than  60°  to the outward direction at the disc surface, similar to the Newtonian case. For prograde rotating discs around Kerr black holes, this angle increases and becomes  90°  for footpoints anchored to the disc near the horizon of a critically spinning   a = M   black hole. Thus, a disc around a critically spinning black hole may centrifugally launch a jet even along the rotation axis.  相似文献   

5.
We investigate the influence of scattering and geometry on the attenuation curve in disc galaxies. We investigate both qualitatively and quantitatively which errors are made by either neglecting or approximating scattering, and which uncertainties are introduced as a result of a simplification of the star–dust geometry. We find that the magnitude of these errors depends on the inclination of the galaxy and, in particular, that, for face-on galaxies, the errors due to improper treatment of scattering dominate those due to imprecise star–dust geometry. Therefore we argue that, in all methods aimed at determining the opacity of disc galaxies, scattering should be taken into account in a proper way.  相似文献   

6.
7.
The electric charge on rotating black holes is calculated to be ∼ BJ in the force-free configuration of Ghosh, with a horizon flux of ∼ BM 2. This charge is gravitationally weak for B ∼1015 G , so that the Kerr metric applies. Being similar to the electric charge of a magnetar, both electric charge and magnetic flux should be, in sign and order of magnitude, continuous during stellar collapse into a black hole. Extraction of the rotational energy from newly formed black holes may proceed by interaction with the magnetic field.  相似文献   

8.
9.
10.
The time-dependent general relativistic equations of degenerate electrodynamics are solved numerically in order to study the mechanism of the electromagnetic extraction of the rotational energy of black holes. We performed a series of 2D runs for black holes with specific angular momentum, a , from 0.1 to 0.9 and for a monopole magnetic field assuming axisymmetry. In the inner region of the wind, the solution quickly settles to a steady state with an outgoing Poynting flux. In all cases the angular velocity of the magnetic field lines is almost half the angular velocity of the black hole. Thus, at least for the configuration considered, the Blandford–Znajek mechanism operates near its maximum power output.  相似文献   

11.
Polars (or AM Her systems) are cataclysmic variables without a disc due to the strong magnetic field of the white dwarf. Most of their emission comes from the region where the accretion column impacts the white dwarf and cools through cyclotron and bremsstrahlung processes. We present a new code, cyclops , to model the optical emission from these systems including the four Stokes parameters. It considers a three-dimensional region with the electronic density and temperature varying following a shock-like profile and a dipolar magnetic field. The radiative transfer is solved in steps considering the solution with non-null input radiation. The footprint of the column in the white dwarf surface is determined by the threading region in the equatorial plane, i.e. the region from where the flow follows the magnetic lines. The extinction caused by the Thomson scattering above the emitting region is optionally included. The search for the model parameters that best fit an observational data set is carried out using a hybrid approach: a genetic algorithm is used to seek for the regions of the parameter space having the best models and then an amoeba code refines the search. An example of the application to multi-wavelength data of V834 Cen is presented. The fit found is consistent with previous parameter estimates and is able to reproduce the features of V834 data in three wavebands.  相似文献   

12.
13.
In this paper we report the results of axisymmetric relativistic magnetohydrodynamic (MHD) simulations for the problem of a Kerr black hole immersed in a rarefied plasma with 'uniform' magnetic field. The long-term solution shows properties that are significantly different from those of the initial transient phase studied recently by Koide. The topology of magnetic field lines within the ergosphere is similar to that of the split-monopole model with a strong current sheet in the equatorial plane. Closer inspection reveals a system of isolated magnetic islands inside the sheet and ongoing magnetic reconnection. No regions of negative hydrodynamic 'energy at infinity' are seen inside the ergosphere and the so-called MHD Penrose process does not operate. However, the rotational energy of the black hole continues to be extracted via the purely electromagnetic Blandford–Znajek mechanism. In spite of this, no strong relativistic outflows from the black hole are seen to be developing. Combined with results of other recent simulations, our results signal a potential problem for the standard MHD model of relativistic astrophysical jets should they be found at distances as small as a few tens of gravitational radii from the central black hole.  相似文献   

14.
Accurate photometric and kinematic modelling of disc galaxies requires the inclusion of radiative transfer models. Because of the complexity of the radiative transfer equation (RTE), sophisticated techniques are required. Various techniques have been employed for the attenuation in disc galaxies, but a quantitative comparison of them is difficult, because of the differing assumptions, approximations and accuracy requirements that are adopted in the literature. In this paper, we present an unbiased comparison of four methods to solve the RTE, in terms of accuracy, efficiency and flexibility. We apply them all to one problem that can serve as a first approximation of large portions of disc galaxies: a one-dimensional plane-parallel geometry, with both absorption and multiple scattering taken into account, with arbitrary vertical distributions of stars and dust and an arbitrary angular redistribution of the scattering. We find that the spherical harmonics method is by far the most efficient way to solve the RTE, whereas both Monte Carlo simulations and the iteration method, which are straightforward to extend to more complex geometries, have a cost that is about 170 times larger.  相似文献   

15.
Recent X-ray observations have shown evidence for exceptionally broad and skewed iron Kα emission lines from several accreting black hole systems. The lines are assumed to be due to fluorescence of the accretion disc illuminated by a surrounding corona and require a steep emissivity profile increasing into the innermost radius. This appears to question both standard accretion disc theory and the zero-torque assumption for the inner boundary condition, both of which predict a much less extreme profile. Instead it argues that a torque may be present due to magnetic coupling with matter in the plunging region or even to the spinning black hole itself. Discussion so far has centred on the torque acting on the disc. However, the crucial determinant of the iron line profile is the radial variation of the power radiated in the corona. Here we study the effects of different inner boundary conditions on the coronal emissivity and on the profiles of the observable Fe Kα lines. We argue that in the extreme case where a prominent highly redshifted component of the iron line is detected, requiring a steep emissivity profile in the innermost part and a flatter one outside, energy from the gas plunging into the black hole is being fed directly to the corona.  相似文献   

16.
17.
18.
19.
The X‐ray spectra of luminous Seyfert 1 galaxies often appear to be reflection dominated. In a number of Narrow Line Seyfert 1 (NLS1) galaxies and galactic black holes in the very high state, the variability of the continuum and of the iron line are decoupled, the reflected component being often much less variable than the continuum. These properties have been interpreted as effects of gravitational light bending. In this framework, we present detailed Monte‐Carlo simulations of the reflection continuum in the Kerr metric. These calculations confirm that the spectra and variability behaviour of these sources can be reproduced by the light bending model. As an alternative to the light bending model, we show that similar observational properties are expected from radiation pressure dominated discs subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two‐phase structure. In this model, most of the observed spectral and variability features originate from the complex geometrical structure of the inner regions of near‐Eddington accretion flows and are therefore a signature of accretion physics rather than general relativity. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Mathisson–Papapetrou equations are solved numerically to obtain trajectories of spinning test particles in (the meridional section of) the Kerr space–time. The supplementary conditions p σ S μσ =0 are used to close the system of equations. The results show that in principle a spin-curvature interaction may lead to considerable deviations from geodesic motion, although in astrophysical situations of interest probably no large spin effects can be expected for values of spin consistent with a pole–dipole test-particle approximation. However, a significant cumulative effect may occur, e.g. in the inspiral of a spinning particle on to a rotating compact body, that would modify gravitational waves generated by such a system. A thorough literature review is included in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号