首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive Permo-Carboniferous volcanism has been documented from the Bohemian Massif. The late Carboniferous volcanic episode started at the Duckmantian–Bolsovian boundary and continued intermittently until Westphalian D to Stephanian B producing mainly felsic and more rarely mafic volcanics in the Central Bohemian and the Sudetic basins. During the early Permian volcanic episode, after the intra-Stephanian hiatus, additional large volumes of felsic and mafic volcanics were extruded in the Sudetic basins. The volcanics of both episodes range from entirely subalkaline (calc-alkaline to tholeiitic) of convergent plate margin-like type to transitional and alkaline of within-plate character. A possible common magma could not be identified among the Carboniferous and Permian primitive magmas, but a common geochemical signature (enrichment in Th, U, REE and depletion in Nb, Sr, P, Ti) in the volcanic series of both episodes was recognized. On the other hand, volcanics of both episodes differ in intensities of Nb, Sr and P depletion and also, in part, in their isotope signatures. High 87Sr/86Sr (0.707–0.710) and low εNd (−6.0 to −6.1) are characteristic of the Carboniferous mafic volcanics, whereas low 87Sr/86Sr (0.705–0.708) and higher εNd ranging from −2.7 to −3.4 are typical of the Permian volcanics. Felsic volcanics of both episodes vary substantially in 87Sr/86Sr (0.705–0.762) and εNd (−0.9 to −5.1). Different depths of magma source or heterogeneity of the Carboniferous and Permian mantle can be inferred from variation in some characteristic elements of the geochemical signature for volcanics in some basins. The Sr–Nd isotopic data with negative εNd values confirm a significant crustal component in the volcanic rocks that may have been inherited from the upper mantle source and/or from assimilation of older crust during magmatic underplating and ascending of primary basic magma. Two different types of primary magma development and formation of a bimodal volcanic series have been recognized: (i) creation of a unique magma by assimilation fractional crystallization processes within shallow-level reservoirs (type Intra-Sudetic Basin) and (ii) generation and mixing of independent mafic and felsic magmas, the latter by partial melting of upper crustal material in a high-level chamber (type Krkonoše Piedmont Basin). A similar origin for the Permo-Carboniferous volcanics of the Bohemian Massif is obvious, however, their geochemical peculiarities in individual basins indicate evolution in separate crustal magma chambers.  相似文献   

2.
张旗  王焰 《岩石学报》1999,15(4):576-583
扬子地块西南缘晚泥盆世至晚二叠世的基性岩浆岩具有大体类似的地球化学性质, 它们均富集Ti(TiO2> 2% )、LILE和LREE(La/Yb)N= 4.8~14.6),Ti/V(32~67)、Ti/Y(400~693)和Zr/Y(3.2~7.6)比值高,具洋岛玄武岩的特征,推测它们均与地幔柱岩浆的活动有关。该地幔柱岩浆活动的时期与古特提斯洋盆演化的时期大体吻合, 但地幔柱岩浆开始喷发的中心与古特提斯初始扩张的中心相距甚远,看来,金沙江-哀牢山洋盆的张开与地幔柱岩浆活动无关。从晚泥盆世至晚二叠世,地幔柱岩浆活动的规模和强度逐渐增加,玄武岩分布中心从广西的南宁-百色之间逐渐向北西310°方向迁移了约600 km ,推测这一迁移轨迹可能受金沙江-哀牢山洋盆扩张的影响。据此估计, 金沙江-哀牢山洋盆宽度可达约1 000 km 。据地幔柱岩浆轨迹与金沙江-哀牢山缝合带所夹的角度推测, 扬子地块可能经历了顺时针旋转, 与古地磁资料一致。  相似文献   

3.
The south-eastern Bohemian Massif consolidated during the Late Variscan orogeny by the oblique collision of two continental crustal blocks after closure of an oceanic realm. One microcontinent comprises portions which are now distributed among Moravian and Moldanubian units and which are characterized by Late Proterozoic tectonothermal events, especially by granitoid intrusions. The other microcontinent includes the Gföhl gneiss and granulites (Gföhl nappe) of probable Early Palaeozoic protolith ages. Both continental blocks are separated by an ophiolite-like assemblage, which is preserved in portions of the Raabs unit.Oblique crustal stacking is accompanied by north-eastward propagation of nappes in a dextral transpressive regime. Exhumation of previously thickened crust is achieved by equally oriented bulk extension but partitioned in distinct displacement paths. Coeval stacking and extension at different crustal levels is suggested.Correspondence to: H. Fritz  相似文献   

4.
晚石炭纪-早二叠纪,在准噶尔盆地西北缘,发育区域性的火山岩建造,岩性以酸性英安岩和流纹岩为主,同时发育少量中性玄武安山岩和安山岩,多属于中-低钾的钙碱性系列。样品全碱(Na2O+K2O)含量为0.99% ~8.12%,K2O的含量较低,为3.01% ~0.05%,稀土元素总量(∑ REE)较低。稀土元素轻重分异,轻稀土元素(LREE)相对于重稀土元素(HREE)富集:(La/Yb)N=0.76~5.18,且部分样品显示轻微的Eu负异常和Ce正异常:δEu=0.533~1.148,δCe=0.979~1.224。微量元素中大离子亲石元素(LILE)富集,高场强元素Nb、Ta亏损。分析认为石炭系末期-二叠系早期,研究区所处构造环境为洋内弧附近的前弧盆地,发育的火山岩是母源岩浆经历了一定程度分异作用后的产物,以岛弧环境为主,兼具有部分板内大陆环境特征。  相似文献   

5.
The Variscan orogenic belt, of which the Bohemian Massif is a part, is typically recognized for its characteristic low pressure, high temperature metamorphism and a large volume of granites. However, there are also bodies of high pressure rocks (eclogites, garnet peridotites and high pressure granulites) which are small in size but widely distributed throughtout the Massif. Initially the high pressure rocks were considered to be relicts of a much older orogenic event, but the increasing data derived from isotopic and geochronological investigations show that many of these rocks have Palaeozoic protoliths. Metamorphic ages from the high pressure rocks define no single event. Instead, a number of discrete clusters of ages are found between about 430 Ma and the time of the dominant low pressure event at around 320–330 Ma.Most of the eclogite and granulite facies rocks are assigned to allochthonous nappes that arrived close to the end of the low pressure event, but before final granite intrusion. The nappes contain a mixture of different units and the relationship between rocks with high pressure relicts and host gneisses with no apparent signs of deep burial is still problematic. Some of the high pressure rocks retain evidence of multiple stages of partial re-equilibration during uplift. Moreover, it can be shown in certain instances that host gneisses also endured a multistage metamorphic development but with a peak event convergent with one of the breakdown stages in the enclosed rocks with high pressure relicts. It thus appears that the nappe units are composite bodies probably formed during episodic intracrustal thrusting. Fluids derived from prograde dehydration reactions in the newly under thrusting slab are taken to be the catalysts that drove the partial re-equilibrations.On the scale of the whole Massif it can be seen within the units with high pressure relicts that the temperature at the peak recorded pressure and that during the breakdown are variable in different locations. It is interpreted that regional metamorphic gradients are preserved for given stages in the history and thus the present day dismembered nappe relicts are not too far removed from their original spatial distribution in an original coherent unit. From the temperature information alone it is highly probable that the refrigerating underthrusting slab was situated in the north-west. However, this north-west to south-east underthrusting probably represents the major 380–370 Ma event and is no guide to the final thrusting that emplaced the much thinned nappe pile with high pressure relicts.Granite genesis is attributed to the late stage stacking, during the final Himalayan-type collision stage, of thinned crust covered by young, water-rich, sediments — erosion products of the earlier orogenic stages. Regional metamorphism at shallow depths above the voluminous granites was followed by final nappe emplacement which rejuvenated the granite ascent in places. Correspondence to: P. J. O'Brien  相似文献   

6.
Abstract

The tectonic contact between low-grade metase-dimentary series and high-grade rocks in the Hlinsko region (Bohemian Massif) is commonly interpreted as a thrust of the Barrandian sediments over the upper Moldanubian nappe.

The sediments occur in an E-facing synform that contains a tonalitic laccolith on its eastern boundary with the Moldanubian, and is truncated by a granodiorite pluton to the west. The synform represents a late deformational folding event related to the granodiorite intrusion. NW-oriented normal shear in the tonalite is indicated by S-C microstructures. Kinematic criteria associated with the major foliation and lineation development in the metasediments also indicate a north-westward, normal shear. In addition, Moldanubian gneiss display late shear bands due to north-westward, normal shear. Consequently, the presumed thrust is a low-angle, normal shear zone.

Low-pressure type metamorphism (3 < P < 4 x 102 MPa) coeval with the major deformational phase in pelites of the Hlinsko synform is attributed to both the tonalite aureole and the extensive HT metamorphism (under P > 6 x 102 MPa) that has affected the underlying Moldanubian.

The possibly polyphase normal fault is consistent with the meta-morphic pressure jump between the metasediments and the Moldanubian.

We suggest that the tonalite intruded syntectonically within the normal ductile shear zone active during waning stages of the Variscan orogeny.  相似文献   

7.
最近,笔者在博格达山东段北部的西地-伊齐-小红柳峡一带的地质调查中发现,该区发育有大量晚石炭世柳树沟组双峰式火山岩及早二叠世卡拉岗组酸性火山岩建造,但双峰式火山岩性质及成因有别于其南侧七角井早石炭世双峰式火山岩。玄武岩富钠贫钾(K_2O=0.18%~0.45%,Na_2O=2.24%~3.63%),属拉斑系列;TiO_2=1.6%~1.7%,略高于MORB,较高的Al(Al_2O_3=16.2%~16.7%)、高Mg(MgO=8.12%~9.54%,Mg~#=61~64),以及低K_2O/TiO_2和K_2O/P_2O_5比值(分别为0.1~0.27、0.63~1.68),反映了在岩浆演化过程中分离结晶作用不明显;Rb/Sr比值0.01~0.02,Zr/Nb=21.6~39.7,Zr/Y=5.38~7.47,以及不相容元素Ba、Zr、Hf相对略富集、Nb-Ta和Th相对亏损,显示岩石具有板内玄武岩的特点;稀土元素球粒陨石标准化配分图上整体接近于平坦型,(La/Yb)_N=1.8~1.9,Eu无异常至轻微正异常(δEu=1.07~1.12),正ε_(Nd)(t)值(+5.63~+5.89),(~(143)Nd/~(144)Nd)_I=0.512927~0.512944,Th/Yb0.2,Ta/Yb=0.1,表明玄武岩浆源于亏损软流圈地幔,且在演化过程中不曾发生过斜长石的分离结晶作用,并暗示当时的大陆地壳可能由于拉张而变得较薄,玄武岩浆形成后快速上升至地表喷发。双峰式火山岩中的流纹岩Rb-Sr等时线年龄为296±2Ma(1σ),具高Si(SiO_2=76%~80%),富钾贫钠(K_2O=5.1%~5.7%,Na_2O=0.94%~2.03%);低Al(Al_2O_3=7.9%~10.4%);低Ti、Ca和P含量,属高钾钙碱性系列;微量元素Rb、Th、Zr、Hf、K相对富集,Ba、Sr、P、Ti、Nb、Ta为显著亏损;轻稀土元素适度富集且轻、重稀土分馏程度低,(La/Yb)_N=5.1~7.1,(La/Sm)_N=2、(Gd/Yb)_N=1.6~2.2,以及强烈的负Eu异常(δEu=0.17~0.2),(~(87)Sr/~(86)Sr)_I=0.7051~0.7052,δ~(18)O=11.6‰,指示岩石源于地壳物质的部分熔融,源区存在有斜长石残留,形成于大陆裂谷环境。早二叠世末流纹岩(Rb-sr等时线年龄为278±2Ma)具高Si(SiO_2=74%),富钾贫钠(K_2O/Na_2O2),低Al(Al_2O_3=11.0%)以及较低的Ti和P含量的特征,岩石为高钾钙碱性系列;微量元素PM标准化图解上表现为Rb、Ba、Th、U、K、La、Ce不相容元素相对富集,高场强元素Nb、Ta、P、Ti以及Sr为明显的负异常;轻稀土轻度富集,(La/Yb)_N=5~6,(La/Sm)_N=3,(Gd/Yb)_N=1.3~1.4,以及强烈的负Eu异常(δEu=0.31~0.39),(~(87)Sr/~(86)Sr)_I为0.7069,δ~(18)O=11.97‰,指示源于地壳物质部分熔融的产物,形成于伸展垮塌的构造环境。综合研究结果表明,博格达山前身裂谷岩浆作用始于早石炭世,结束于晚石炭世末期,早二叠世末进入后造山伸展的演化阶段。  相似文献   

8.
Abstract The Erzgebirge Crystalline Complex (ECC) is a rare example where both‘crustal’eclogites and mantle-derived garnet-bearing ultramafic rocks (GBUs) occur in the same tectonic unit. Thus, the ECC represents a key complex for studying tectonic processes such as crustal thickening or incorporation of mantle-derived material into the continental crust. This study provides the first evidence that high-pressure metamorphism in the ECC is of Variscan age. Sm-Nd isochrons define ages of 333 ± 6 (Grt-WR), 337± 5 (Grt-WR), 360± 7 (Grt-Cpx-WR) (eclogites) and 353 ± 7 Ma (Grt-WR) (garnet-pyroxenite). 40Ar/39Ar spectra of phengite from two eclogite samples give plateau ages of 348 ± 2 and 355 ± 2 Ma. The overlap of ages from isotopic systems with blocking temperatures that differ by about 300 ° C indicates extremely fast tectonic uplift rates. Minimum cooling rates were about 50° C Myr-1. As a consequence, the closure temperature of the specific isotopic system is of minor importance, and the ages correspond to the time of high-pressure metamorphism. Despite textural equilibrium and metamorphic temperatures in excess of 800° C, clinopyroxene, garnet and whole rock do not define a three-point isochron in three of four samples. The metamorphic clinopyroxenes seem to have inherited their isotopic signature from magmatic precursors. Rapid tectonic burial and uplift within only a few million years might be the reason for the observed Sm-Nd disequilibrium. The εNd values of the eclogites (+4.4 to +6.9) suggest the protoliths were derived from a long-term depleted mantle, probably a MORB source, whereas the isotopically enriched garnet-pyroxenite (εNd–2.9) might represent subcontinental mantle material, emplaced into the crust prior to or during collision. The similarity of ages of the two different rock types suggests a shared metamorphic history.  相似文献   

9.
The SUDETES 2003 wide-angle refraction/reflection experiment covered the area of the south-western Poland and the northern Bohemian Massif. The good quality data that were gathered combined with the data from previous experiments (POLONAISE'97, CELEBRATION 2000) allowed us to prepare a 3D seismic model of the crust and uppermost mantle for this area. We inverted travel times of both refracted and reflected P waves using the JIVE3D package. This allowed us to obtain a model of P-wave velocity distribution as well as the shape of major boundaries in the crust. We also present a detailed uncertainty analysis for both the boundary depths and the velocity field. In doing the uncertainty analysis we found an interesting, strong dependence between uncertainty and inversion scheme (order of used phases). We also compared the model with surface geology and found good correlation between velocity inhomogeneities in the uppermost crust (down to 2 km) and major geological units. The higher velocity lower crust (6.9–7.2 km/s) could result from remelting of the lower crust or magmatic underplating.  相似文献   

10.
Facies evolution and vertical changes within the Late Cretaceous sequence of the Bohemian Cretaceous Basin reveal fluctuations of intra- and extrabasinal circumstances. Evidence of periodic oscillations is recognized and two categories of aperiodic event indications are distinguished according to their significance and lateral persistence. Several lithoevents may be related to eustatic changes, while others indicate the independent evolution of the basin, influenced by epeirogenetic movements of segments of the Bohemian Massif.  相似文献   

11.
通过区域不整合面、沉积体系转换面、构造应力场转换面和水上暴露面等层序界面的识别,对研究区进行层序地层划分,指出鄂尔多斯盆地东北缘晚古生代陆表海含煤岩系发育7个三级层序。在此基础上,认为陆表海层序仍然具有“三元”结构,由低位体系域、海侵体系域和高位体系域组成。在盆地北部发育的多期河道砂岩具有低位体系域的下切谷充填特点——面状充填,如晋祠砂岩、桥头砂岩以及北岔沟砂岩等。煤层在层序格架中的定位与海平面变化的转换时期有关,主要发育在陆表海环境的海侵体系域下部以及陆相环境的高位体系域上部。  相似文献   

12.
High-temperature, high-pressure eclogite and garnet pyroxenite occur as lenses in garnet peridotite bodies of the Gföhl nappe in the Bohemian Massif. The high-pressure assemblages formed in the mantle and are important for allowing investigations of mantle compositions and processes. Eclogite is distinguished from garnet pyroxenite on the basis of elemental composition, with mg number <80, Na2O > 0.75 wt.%, Cr2O3 < 0.15 wt.% and Ni < 400 ppm. Considerable scatter in two-element variation diagrams and the common modal layering of some eclogite bodies indicate the importance of crystal accumulation in eclogite and garnet pyroxenite petrogenesis. A wide range in isotopic composition of clinopyroxene separates [Nd, +5.4 to –6.0; (87Sr/86Sr)i, 0.70314–0.71445; 18OSMOW, 3.8–5.8%o] requires that subducted oceanic crust is a component in some melts from which eclogite and garnet pyroxenite crystallized. Variscan Sm-Nd ages were obtained for garnet-clinopyroxene pairs from Dobeovice eclogite (338 Ma), Úhrov eclogite (344 Ma) and Nové Dvory garnet pyroxenite (343 Ma). Gföhl eclogite and garnet pyroxenite formed by high-pressure crystal accumulation (±trapped melt) from transient melts in the lithosphere, and the source of such melts was subducted, hydrothermally altered oceanic crust, including subducted sediments. Much of the chemical variation in the eclogites can be explained by simple fractional crystallization, whereas variation in the pyroxenites indicates fractional crystallization accompanied by some assimilation of the peridotite host.  相似文献   

13.
The Brunovistulian terrane represents a microcontinent of enigmatic Proterozoic provenance that was located at the southern margin of Baltica in the early Paleozoic. During the Variscan orogeny, it represented the lower plate at the southern margin of Laurussia, involved in the collision with the Armorican terrane assemblage. In this respect, it resembles the Avalonian terrane in the west and the Istanbul Zone in the east. There is a growing evidence about the presence of a Devonian back-arc at the margin of the Brunovistulian terrane. The early Variscan phase was characterized by the formation of Devonian extensional basins with the within-plate volcanic activity and formation of narrow segments of oceanic crust. The oldest Viséan flysch of the Rheic/Rhenohercynian remnant basin (Protivanov, Andelska Hora and Horní Benesov formations) forms the highest allochthonous units and contains, together with slices of Silurian Bohemian facies, clastic micas from early Paleozoic crystalline rocks that are presumably derived from terranes of Armorican affinity although provenance from an active Brunovistulian margin cannot be fully excluded either. The development of the Moravo–Silesian late Paleozoic basin was terminated by coal-bearing paralic and limnic sediments. The progressive Carboniferous stacking of nappes and their impingement on the Laurussian foreland led to crustal thickening and shortening and a number of distinct deformational and folding events. The postorogenic extension led to the formation of the terminal Carboniferous-early Permian Boskovice Graben located in the eastern part of the Brunovistulian terrane, in front of the crystalline nappes. The highest, allochthonous westernmost flysch units, locally with the basal slices of the Devonian and Silurian rocks thrusted over the Silesicum in the NW part of the Brunovistulian terrane, may share a similar tectonic position with the Giessen–Harz nappes. The Silesicum represents the outermost margin of the Brunovistulian terrane with many features in common with the Northern Phyllite Zone at the Avalonia–Armorica interface in Germany.  相似文献   

14.
鄂尔多斯盆地晚古生代基底继承了奥陶纪中部高、东部和西部低及西陡东缓的古构造面貌。利用大量钻井分层数据,绘制了晚古生代各个时期残存地层厚度图,其空间变化反映了鄂尔多斯盆地晚古生代古构造格局特征。结合东西向及南北向地层厚度对比、演化剖面的研究,认为晚古生代鄂尔多斯盆地的沉积在本溪期—太原期主要受中央古隆起的控制,地层空间展布东西分带明显;山西期中央古隆起对沉积作用的控制不是很明显,地层从东西分异逐渐过渡到南北分异,这种沉积格局的转变与古地理演化具有一致性,从而说明了古构造对沉积的控制作用。  相似文献   

15.
东昆仑西段晚古生代盆地系   总被引:3,自引:0,他引:3  
东昆仑西段晚古生代从北向南分别为昆北弧后盆地、昆中岛弧及昆南弧前增生楔.在二叠纪,增生楔又转变成岛弧及弧后盆地.昆北弧后盆地石炭纪发育有陆缘到深海盆地的沉积,二叠纪由碎屑岩过渡为浅海碳酸盐岩.昆中岛弧带沉积盖层为一些碳酸盐岩孤立台地和小的山间盆地,并有火山熔岩、火山碎屑岩的堆积.昆南弧前盆地岩石类型非常复杂,石炭纪包括了陆源碎屑岩、火山熔岩、火岩碎屑岩、钙屑浊积岩、硅质岩等.二叠纪的弧间盆地从深海盆地演化为浅海碳酸盐岩沉积.前锋弧也逐渐露出水面,形成孤立灰岩台地.东昆仑西段晚古生代沉积整体特征具有沉积相分布不对称性及"盆岭"相问展布、沉积类型多样性、物源、古流向的双(多)向性、沉积序列的两层性、沉积物的成熟度低、近源等.盆地演化可划分为盆地扩张阶段、弧陆碰撞阶段两个阶段.总体表现为弧后盆地性质的沉积与演化特点.  相似文献   

16.
准噶尔盆地南缘晚古生代双峰式火山岩组合以玄武岩和英安斑岩的伴生出现为特征。锆石LA-ICP-MS U-Pb定年结果显示,英安斑岩和玄武岩的结晶年龄分别为298±2 Ma和297~304 Ma。在地球化学组成上,英安斑岩样品富SiO_2、Al_2O_3和Na_2O,相对于原始地幔富集Th和LREE,明显亏损Nb、Ta和Ti等高场强元素;而玄武岩样品相对于原始地幔明显富集Th、LREE、Zr和Hf等,明显亏损Nb、Ta和Ti。全岩Sr-Nd同位素研究结果显示,英安斑岩样品(~(87)Sr/~(86)Sr)t值为0.705,εNd(t)值分布在+6.5~+11之间,而玄武岩样品的(~(87)Sr/~(86)Sr)t值为0.704,εNd(t)值分布在+7.5~+8.4之间。这些特征指示玄武岩和英安斑岩应分别起源于相对亏损的地幔源区和新生地壳组分的部分熔融。综合野外地质、岩石学、地球化学和同位素地质学等多方面的资料,可以确定准南地区玄武岩和英安斑岩并非同源岩浆作用的产物。其中,玄武岩应起源于亏损地幔的部分熔融,并且岩浆在上升侵位过程中经历了一定程度的陆壳混染。英安斑岩的形成与玄武质岩浆的底侵导致新生地壳组分的部分熔融有关。结合区域上已有的研究成果,认为至少从早二叠世(~298 Ma)开始,天山地区已经进入后碰撞阶段,区域构造体制开始由挤压转向伸展。  相似文献   

17.
Shoshonitic series volcanic rocks (SSVR) and adakites are widely distributed in the Permian terrestrial volcanic strata of the Yishijilike–Awulale range of west Tianshan, north Xinjiang, China. Isotopic dating yields Permian ages of 280–250 Ma. The SSVR include absarokite, shoshonite and banakite which are characterized by enrichment of alkalis, particularly in K, combined with lower Ti, higher Al (A/NKC = 0.70–0.99, metaluminous) and Fe2O3 > FeO. The SSVR that are rich in LILE with high REE contents and Eu/Eu range from 0.59 to 1.30. They are rich in LREE ((La/Yb)N 2.15–11.97) and depleted in Nb, Ta and Ti (TNT negative anomalies). The adakites are metaluminous to weakly peraluminous (A/NKC = 0.85-1.16) and belong to the high-SiO2 type of adakite (HSA, SiO2 = 62%–71%). They are characterized by lower ΣREE with strong LREE enrichment ((La/Yb)N 13–35). Pronounced positive Eu anomalies (Eu/Eu = 1.02–1.27), very low Yb contents and distinct TNT-negative anomalies are evident. The SSVR have εNd(t) (+ 1.28 to + 4.92) and (87Sr/86Sr)i (0.7041–0.7057) that are similar to adakites in the regions which are characterized by εNd(t) = 0.95 to + 5.69 and (87Sr/86Sr)i = 0.7050–0.7053. Trace element, REE and Sr/Nd isotopic compositions suggest that both SSVR and adakites possess similar source regions associated with underplated mantle-derived basaltic materials. Lithosphere extension driven by magmatic underplating was responsible for the generation of both the SSVR and adakites. This magmatism serves as a petrological indicator of underplating during the Permian. Obviously thickened crust (62–52 km), a complex Moho discontinuity, high heat flow (~ 100 mw·m− 2), widespread contemporary alkali-rich granites, basic dike swarms (K–Ar ages of 187–271 Ma, Ar–Ar ages of 174–270 Ma and Rb–Sr ages of 255 ± 28 Ma; εNd(t) + 1.84 to + 10.1; (87Sr/86Sr)i 0.7035 and 0.7065), and basic granulites (SHRIMP U–Pb age of 268–279 ± 5.6 Ma) provide additional evidences for the underplating event in this area during Permian.  相似文献   

18.
The Early Palaeozoic East Krkonoše Complex (EKC) situated in the central West Sudetes, NE Bohemian Massif, is a volcano‐sedimentary suite containing abundant mafic and felsic volcanics metamorphosed to greenschist facies. The trace element distribution patterns and Nd isotope signatures (ENd500 = + 3.1 to + 6.6) of the metabasites (metabasalts) indicate that they may be related to a rising mantle diapir associated with intracontinental rifting. At the early stage, limited melting of an upwelling asthenosphere produced alkali basalts and enriched tholeiites which compositionally resemble oceanic island basalts. A later stage of rifting with larger degrees of melting at shallower depths generated tholeiitic basalts with E‐MORB to N‐MORB characteristics. The values of (87Sr/86Sr)i = 0.706 and ENd500 = − 5 ±1 of the porphyroids (metarhyolites) as well as the lack of rocks with intermediate compositions suggest that the felsic rocks were formed by a partial melting event of continental crust triggered by mantle melts. The geochemistry of the EKC bimodal metavolcanics and their association with abundant terrigenous metasediments suggest that the felsic–mafic volcanic suite was generated during intracontinental rifting. This process, widespread in Western and Central Europe during the Early Palaeozoic, is evidence of large‐scale fragmentation of the northern margin of the Gondwana supercontinent. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Based on detailed and systematic researches of the geology of ore deposits, fluid inclusions and isotope geochemistry etc., and regarding the Late Paleozoic fluid system of the Yuebei Basin as an integrated object in this paper, we have revealed the temporo-spatial evolution law of the basin's fluid system and discussed its ore-forming effects by simulating and analyzing the distribution of ore-forming elements, the fluid thermodynamics and dynamics of evolution processes of this basin. The results show that Late Paleozoic ore-forming fluid systems of the Yuebei Basin include four basic types as follows. (1) The sea floor volcanic-exhalation system developed during the rapid basin slip-extension stage in the Mid-Late Devonian, which affected the Dabaoshan region. It thus formed the Dabaoshan-type Cu-Pb-Zn-Fe sea floor volcanic-exhalation sedimentary deposits. (2) The compaction fluid system developed during the stable spreading and thermal subsidence-compression stage of the basin in the Mid-Late Devonian. The range of its effects extended all over the whole basin. It resulted in filling-metasomatic deposits, such as the Hongyan-type pyrite deposits and pyrite sheet within the Fankou-type Cu-Pb-Zn-S deposits. (3) The hot water circulation system of sea floor developed during the stage of basin uplifting and micro-aulacogen from the late Late Carboniferous to Middle Carboniferous. The range of its effects covered the Fankou region. It thus formed MVT deposits, such as the main orebody of the Fankou-type Pb-Zn-S deposits. (4) The gravity fluid system developed during the stage of fold uplifting and the basin closed from Middle Triassic to Jurassic, forming groundwater hydrothermal deposits, e.g. the veinlet Pb-Zn-calcite orebodies of the Fankou-type Pb-Zn- S deposits. Migration and concentration of the ore-forming fluids were constrained by the state of temporo-spatial distribution of its fluid potential. Growth faults not only converged the fluids and drove them to move upwards, but also the fluids often crossed the faults to the edges of the basin at the bottom of these faults and the lithologic interfaces, and even migrated to the basin's edges from top to bottom along the faults, which may be one of the basic reasons for the stratabound deposits to cluster mainly along the contemporaneous faults on the inner border of the basin. The superposed mineralization resulting from the multi-stage activity of contemporaneous faults and ore-forming fluid systems in the basin may be one of the key factors for forming superlarge ore deposits.  相似文献   

20.
从中生代到新生代,准噶尔盆地腹部地区连续沉积,缺少腹部地区的样品,因此准噶尔地区晚古生代构造演化的研究常集中于盆地周围的褶皱造山带。本文通过对早二叠纪-晚石炭纪钻井岩心样品的地球化学、岩石学特征进行研究。结果表明: 1)许多钻井的不同层位中,都发育着表明水上喷发环境的褐色凝灰岩; 2)准噶尔盆地腹部早二叠纪-晚石炭纪火山岩主要是碱性玄武岩、安山岩及少量的流纹岩,样品的大部分以高碱为特征,反映了喷发于陆上增厚地壳的构造背景; 3)岩心观察、薄片鉴定及主量和微量元素的分析结果表明,晚古生代准噶尔盆地腹部属于大陆构造背景。石炭系火山岩的底部也许存在许多的古老陆块基底。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号