首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We present a petrographic and petrologic analysis of 21 olivine‐pigeonite ureilites, along with new experimental results on melt compositions predicted to be in equilibrium with ureilite compositions. We conclude that these ureilites are the residues of a partial melting/smelting event. Textural evidence preserved in olivine and pigeonite record the extent of primary smelting. In pigeonite cores, we observe fine trains of iron metal inclusions that formed by the reduction of olivine to pigeonite and metal during primary smelting. Olivine cores lack metal inclusions but the outer grain boundaries are variably reduced by a late‐stage reduction event. The modal proportion of pigeonite and percentage of olivine affected by late stage reduction are inversely related and provide an estimation of the degree of primary smelting during ureilite petrogenesis. In our sample suite, this correlation holds for 16 of the 21 samples examined. Olivine‐pigeonite‐liquid phase equilibrium constraints are used to obtain temperature estimates for the ureilite samples examined. Inferred smelting temperatures range from ~1150°C to just over 1300°C and span the range of estimates published for ureilites containing two or more pyroxenes. Temperature is also positively correlated with modal percent pigeonite. Smelting temperature is inversely correlated with smelting depth—the hottest olivine‐pigeonite ureilites coming from the shallowest depth in the ureilite parent body. The highest temperature samples also have oxygen isotopic signatures that fall toward the refractory inclusion‐rich end of the carbonaceous chondrite‐anhydrous mineral (CCAM) slope 1 mixing line. These temperature‐depth variations in the ureilite parent body could have been created by a heterogeneous distribution of heat producing elements, which would indicate that isotopic heterogeneities existed in the material from which the ureilite parent body was assembled.  相似文献   

2.
Ureilite meteorites are abundant, carbon‐rich, primitive achondrites made of coarse‐grained, equilibrated olivine and pyroxene (usually pigeonite). They probably sample the baked, heterogeneous, melt‐depleted mantle of a large, once‐chondritic parent body that was broken up catastrophically while still young and hot. Heterogeneity in the parent body is inferred from a considerable “slope‐1” variation from one meteorite to another in oxygen isotopes (?2.5‰ < Δ17O < ?0.2‰), which correlates with both molar FeO/MgO (range 0.03–0.35) and molar FeO/MnO (range 3–57), i.e., Δ17O correlates with the redox state. No consensus has yet emerged on the cause of these correlated trends. One view favors their inheritance via silicates from hot nebular (preaccretion) processes. Another invokes smelting (reduction of FeO by C in the hot parent body). Here, guided mainly by similar trends among equilibrated ordinary and R chondrites, studies of their unequilibrated counterparts, and work on other primitive achondrites, we propose a new model for ureilites in which the parent body accreted nebular ice with high‐?17O, Mg‐rich silicates with low ?17O, and varying amounts of metallic iron. Water from the thawing ice then oxidized the metal yielding secondary FeO‐bearing minerals with high ?17O that, with metamorphism, became incorporated into the ureilite silicates. FeO/MgO, FeO/MnO, and ?17O correlate because they rose in unison by amounts that varied spatially, depending on the local amount of metal that was oxidized. We suggest that the parent body was so large (radius ? 100 km) that smelting was inhibited and that carbon played a passive role in ureilite evolution. Although ureilites are regarded as complicated meteorites, we believe our analysis explains their mass‐independent oxygen isotope trend and related FeO variation through well‐understood processes and enlightens our understanding of the evolution of early planetesimals from cold, wet bodies to hot, dry ones.  相似文献   

3.
Abstract— For most elements, polymict ureilite EET83309 shows no significant compositional difference from other ureilites, including ordinary (“monomict”) ureilites. Polymict ureilites appear to be mixtures of a wide variety of ordinary ureilites, with little dilution by “foreign” extra-ureilitic materials. Thus, they apparently were mixed (i.e., the ureilites in general formed) on a very small number of parent bodies. In one respect, polymict ureilites do stand out. Along with the only other polymict ureilite that has been analyzed for REE (Nilpena), EET83309 has much higher concentrations of light-middle REE than most ordinary ureilites. Despite these relative enrichments in LREE, polymict ureilites are nearly devoid of basaltic (Al-rich) material. A basaltic component should have formed along with (and presumably above) the ultramafic ureilites, in any closed-system differentiation of an originally chondritic asteroid. This scarcity of complementary basaltic materials may be an important clue to ureilite origins. We suggest that ureilites originated as paracumulates (mushy, cumulate-like, partial melt residues) deep within a primordially-heated asteroid or asteroids. While still largely molten, the asteroid was severely disrupted, and most of its external basaltic portion was permanently blown away, by impact of a large, C-rich projectile. This partially-disruptive impact tended to permeate the paracumulates with C-rich, noble-gas-rich, and 16O-rich magma derived mainly from shock-melting of the projectile. After reaccumulation and cooling, the resultant mixtures of cumulus mafic silicates with essentially “foreign” C-matrix became “monomict” ureilites. Further small impacts produced polymict ureilites as components of a newly-developed, basalt-poor megaregolith. The consistently moderate pyroxene/olivine ratios of the ureilites are as expected for partial melt residues, but not for cumulate (sensu stricto) rocks. The final projectile/target mixing ratio tended to be greatest among the more magnesian and pyroxene-rich portions of the paracumulate, because these portions were lowest in density, and thus concentrated toward the upper surface of the paracumulate layer. As a result, ureilites show correlations among C, Δ17O, and silicate-core mg. This model appears to reconcile many paradoxical aspects of ureilite composition (primitive, near-chondritic, except depleted in basalt, diverse Δ17O) and petrography (igneous, cumulate-like).  相似文献   

4.
The lightly-shocked ureilite RC027 was found in Roosevelt County, New Mexico in 1984. In terms of petrography, texture, mineral compositions, bulk chemical composition, and oxygen isotopic composition it is a typical ureilite. It contains ~75% olivine (Fo 79.4) and 25% pigeonite (mg 81.3, Wo 8.0), with intergranular graphite and (Fe, Ni) metal. It also contains less than 1% of fine-grained, interstitial silicate material, which had not previously been recognized in any ureilite. This material is an assemblage of low-Ca pyroxene (Wo 3.5–9, mg 87–93), augite (Wo 24–36, mg 90–98), glass (typically ~95% SiO2, 4% Al2O3, 0.5% Na2O), and crystalline SiO2. This material has an igneous texture, indicating that it crystallized from an interstitial liquid. Low-Ca pyroxene compositions indicate that the interstitial liquid was not in equilibrium with core pigeonite and olivine and cannot have been either an evolved intercumulus liquid or a low-degree partial melt. It may contain a component of shock-melted olivine and pigeonite, although petrographic evidence indicates that it could not have been an in situ shock melt. One sample of RC027 has a V-shaped rare earth element pattern, typical of ureilites. Another is depleted in light rare earth elements (LREE), similar to acid-treated samples of ureilites, which suggests that LREE in ureilites are contained in an inhomogeneously-distributed phase. RC027 shows the strongest olivine preferred-orientation yet observed in a ureilite. Its fabric is characteristic of fabrics formed by tabular minerals in a fluid laminar flow regime and is unlike those formed by syntectonic recrystallization and plastic flow. The elemental and isotopic compositions of noble gases in RC027 are typical of previously analyzed ureilites. This result indicates that there is no correlation of noble gas content with degree of shock in ureilites, and thus suggests that the gases were present in the ureilite material before shock. Cosmogenic He and Ne contents indicate cosmic ray exposure ages of 1.7 and 1.9 Myr, respectively. Thus, RC027 is not paired with Kenna (a ureilite also found in Roosevelt County), which has an exposure age of ~33 Myr.  相似文献   

5.
A detailed mineralogical and chemical study of Almahata Sitta fine‐grained ureilites (MS‐20, MS‐165, MS‐168) was performed to shed light on the origin of these lithologies and their sulfide and metal. The Almahata Sitta fine‐grained ureilites (silicates <30 μm grain size) show textural and chemical evidence for severe impact smelting as described for other fine‐grained ureilites. Highly reduced areas in Almahata Sitta fine‐grained ureilites show large (up to ~1 mm) Si‐bearing metal grains (up to ~4.5 wt% Si) and niningerite [Mg>0.5,(Mn,Fe)<0.5S] with some similarities to the mineralogy of enstatite (E) chondrites. Overall, metal grains show a large compositional variability in Ni and Si concentrations. Niningerite grains probably formed as a by‐product of smelting via sulfidation. The large Si‐Ni variation in fine‐grained ureilite metal could be the result of variable degrees of reduction during impact smelting, inherited from coarse‐grained ureilite precursors, or a combination of both. Large Si‐bearing metal grains probably formed via coalescence of existing and newly formed metal during impact smelting. Bulk and in situ siderophile trace element abundances indicate three distinct populations of (1) metal crystallized from partial melts in MS‐20, (2) metal resembling bulk chondritic compositions in MS‐165, and (3) residual metal in MS‐168. Almahata Sitta fine‐grained ureilites developed their distinctive mineralogy due to severe reduction during smelting. Despite the presence of E chondrite and ureilite stones in the Almahata Sitta fall, a mixing relation of E chondrites or their constituents and ureilite material in Almahata Sitta can be ruled out based on isotopic, textural, and mineral‐chemical reasons.  相似文献   

6.
Abstract— A popular model for ureilites assumes that during anatexis in an asteroidal mantle, pressure‐buffered equilibrium smelting (partial reduction coincident with partial melting) engendered their conspicuous mafic‐silicate‐core mg diversity (75–96 mol%). Several mass‐balance problems arise from this hypothesis. Smelting inevitably consumes a large proportion of any plausible initial carbon while generating significant proportions of Fe metal and copious proportions of CO gas. The most serious problem concerns the yield of CO gas. If equilibrium smelting produced the ureilites’ entire 21 mol% range in olivine‐core mg, the proportion of gas within the asteroidal mantle (assuming plausibly low pressure <~80 bar) should have reached ≥85 vol%. Based on the remarkably stepwise cooling history inferred from ureilite texture and mineralogy, a runaway, CO‐leaky process that can loosely be termed smelting appears to have occurred, probably triggered by a major impact. The runaway scenario appears likely because, by Le Chǎtelier's principle, CO leakage would tend to accelerate the smelting process. Also, the copious volumes of gas produced by smelting would have led to explosive, mass‐leaky eruptions into the vacuum surrounding the asteroid. Loss of mass would mean diminution of interior pressure, which would induce further smelting, leading to further loss of mass (basalt), and so on. Such a disruptive runaway process may have engendered the ureilites’ distinctive reduced olivine rims. But the only smelting, according to this scenario, was a short‐lived disequilibrium process that reduced only the olivine rims, not the cores; and the ureilites were cooling, not melting, during the abortive “smelting” episode.  相似文献   

7.
Abstract– New analyses of mafic silicates from 14 ureilite meteorites further constrain a strong correlation ( Singletary and Grove 2003 ) between olivine‐core Fo ratio and the temperature of equilibration (TE) recorded by the composition of pigeonite. This correlation may be compared with relationships implied by various postulated combinations of Fo and pressure P in models for ureilite genesis by a putative process of anatectic (depth‐linked, P‐controlled) smelting. In such models, any combination of Fo and P together fixes the temperature of smelting. Agreement between the observed correlation and these models is poor. The anatectic smelting model also carries implausible implications for the depth range at which ureilites of a given composition (Fo) form. Actual ureilites (and polymict ureilite clasts: Downes et al. 2008 ) show a distribution strongly skewed toward the low‐Fo end of the compositional range, with approximately 58% in the range Fo76–81. In contrast, the P‐controlled smelting model implies that the Fo76–81 region is a small fraction of the volume of the parent body: not more than 3.2%, in a model consistent with the Fo‐TE observations; and even ignoring the Fo‐TE evidence not more than 11% (percentages cited require optimal assumptions concerning the size of the parent body). This region also must occur deep within the body, where no straightforward model would imply a strong bias in the impact‐driven sampling process. The ureilites did not derive preponderantly from one atypical “largest offspring” disruption survivor, because cooling history evidence shows that after the disruption (whose efficiency was increased by gas jetting), all of the known ureilites cooled in bodies that were tiny (mass of order 10?9) in comparison with the precursor body. The Ca/Al ratio of the ureilite starting matter cannot be 2.5 times chondritic, as has been suggested, unless the part of the body from which ureilites come is at most 50% of the whole body. Published variants of the anatectic, P‐controlled smelting model have the ureilites coming from a region that is >50 vol% of their parent body; and to invoke a larger body would have the drawback of implying that the Fo76–81 spike represents an even smaller fraction of the parent body’s interior. The ureilites’ moderate depletions in incompatible elements are difficult to reconcile with a fractional fusion model. It is not plausible that melt formed grossly out of equilibrium with the medium‐sized ureilite crystals. The alternative to pressure‐controlled smelting, i.e., a model of gasless or near‐gasless anatexis, has very different implications for the size and evolution of the original parent body. To yield internal pressures prohibitive of smelting in even the shallowest and most ferroan portion of its anatectic mantle, the body would have to be larger than roughly 690 km in diameter. A 400 km body would have approximately 12 vol% of the interior (or 13 vol% of the interior apart from the thermal “skin” that never undergoes anatexis) prone, if both extremely shallow and extremely ferroan, to mild smelting. Gasless anatexis also implies that this large parent body was compositionally, at least in terms of mg, grossly heterogeneous before anatexis, probably (in view of the oxygen isotopic diversity) as a result of mixed accretion.  相似文献   

8.
Abstract— The Nova 001 [= Nuevo Mercurio (b)] and Nullarbor 010 meteorites are ureilites, both of which contain euhedral graphite crystals. The bulk of the meteorites are olivine (Fo79) and pyroxenes (Wo9En73Fs18, Wo3En77Fs20), with a few percent graphite and minor amounts of troilite, Ni-Fe metal, and possibly diamond. The rims of olivine grains are reduced (to Fo91) and contain abundant blebs of Fe metal. Silicate mineral grains are equant, anhedral, up to 2 mm across, and lack obvious preferred orientations. Euhedral graphite crystals (to 1 mm x 0.3 mm) are present at silicate grain boundaries, along boundaries and protruding into the silicates, and entirely within silicate mineral grains. Graphite euhedra are also present as radiating clusters and groups of parallel plates grains embedded in olivine; no other ureilite has comparable graphite textures. Minute lumps within graphite grains are possibly diamond, inferred to be a result of shock. Other shock effects are limited to undulatory extinction and fracturing. Both ureilites have been weathered significantly. Considering their similar mineralogies, identical mineral compositions, and identical unusual textures, Nova 001 and Nullarbor 010 are probably paired. Based on olivine compositions, Nova 001 and Nullarbor 010 are in Group 1 (FeO-rich) of Berkley et al. (1980). Silicate mineral compositions are consistent with those of other known ureilites. The presence of euhedral graphite crystals within the silicate minerals is consistent with an igneous origin, and suggests that large proportions of silicate magma were present locally and crystallized in situ.  相似文献   

9.
The Jiddat al Harasis (JaH) 422 ureilite was found in the Sultanate of Oman; it is classified as a ureilitic impact melt breccia. The meteorite consists of rounded polycrystalline olivine clasts (35%), pores (8%), and microcrystalline matrix (57%). Clasts and matrix have oxygen isotopic values and chemical compositions (major and trace elements) characteristic of the ureilite group. The matrix contains olivine (Fo83–90), low‐Ca pyroxene (En84–92Wo0–5), augite (En71–56Wo20–31), graphite, diamond, Fe‐metal, sulfides, chromite, and felsic glass. Pores are partly filled by secondary Fe‐oxihydroxide and desert alteration products. Pores are surrounded by strongly reduced silicates. Clasts consist of fine‐grained aggregates of polygonal olivine. These clasts have an approximately 250 μm wide reaction rim, in which olivine composition evolves progressively from the core composition (Fo79–81) to the matrix composition (Fo84–87). Veins crossing the clasts comprise pyroxene, Fe‐oxihydroxide, C‐phases, and chromite. Clasts contain Ca‐, Al‐, and Cr‐rich glass along olivine grain boundaries (<1 μm wide). We suggest that a significant portion of JaH 422, including olivine and all the pyroxenes, was molten as a result of an impact. In comparison with other impact‐melted ureilites, JaH 422 shows the highest melt portion. Based on textural and compositional considerations, clasts and matrix probably originated from the same protolith, with the clasts representing relict olivine that survived, but was recrystallized in the impact melt. During the melt stage, the high availability of FeO and elevated temperatures controlled oxygen fugacity at values high enough to stabilize olivine with Fo~83–87 and chromite. Along pores, high Mg# compositions of silicates indicate that in a late stage or after melt crystallization FeO became less available and fO2 conditions were controlled by C?CO + CO2.  相似文献   

10.
Miller Range (MIL) 090340 and MIL 090206 are olivine‐rich achondrites originally classified as ureilites. We investigate their petrography, mineral compositions, olivine Cr valences, equilibration temperatures, and (for MIL 090340) oxygen isotope compositions, and compare them with ureilites and other olivine‐rich achondrites. We conclude that they are brachinite‐like achondrites that provide new insights into the petrogenesis of brachinite clan meteorites. MIL 090340,6 has a granoblastic texture and consists of ~97 modal % by area olivine (Fo = molar Mg/[Mg+Fe] = 71.3 ± 0.6). It also contains minor to trace augite, chromite, chlorapatite, orthopyroxene, metal, troilite, and terrestrial Fe‐oxides. Approximately 80% by area of MIL 090206,5 has a granoblastic texture of olivine (Fo 72.3 ± 0.1) plus minor augite and chromite, similar to MIL 090340 but also containing minor plagioclase. The rest of the section consists of a single crystal of orthopyroxene (~11 × 3 mm), poikilitically enclosing rounded grains of olivine (Fo = 76.1 ± 0.6), augite, chromite, metal, and sulfide. Equilibration temperatures for MIL 090340 and MIL 090206, calculated from olivine‐spinel, olivine‐augite, and two‐pyroxene thermometry range from ~800 to 930 °C. In both samples, symplectic intergrowths of Ca‐poor orthopyroxene + opaque phases (Fe‐oxides, sulfide, metal) occur as rims on and veins/patches within olivine. Before terrestrial weathering, the opaques were probably mostly sulfide, with minor metal. All petrologic properties of MIL 090340 and MIL 090206 are consistent with those of brachinite clan meteorites, and largely distinct from those of ureilites. Oxygen isotope compositions of olivine in MIL 090340 (δ18O = 5.08 ± 0.30‰, δ17O = 2.44 ± 0.21‰, and Δ17O = ?0.20 ± 0.12‰) are also within the range of brachinite clan meteorites, and well distinguished from ureilites. Olivine Cr valences in MIL 090340 and the granoblastic area of MIL 090206 are 2.57 ± 0.06 and 2.59 ± 0.07, respectively, similar to those of three brachinites also analyzed here (Brachina, Hughes 026, Nova 003). They are higher than those of olivine in ureilites, even those containing chromite. The valence systematics of MIL 090340, MIL 090206, and the three analyzed brachinites (lower Fo = more oxidized Cr) are consistent with previous evidence that brachinite‐like parent bodies were inherently more oxidized than the ureilite parent body. The symplectic orthopyroxene + sulfide/metal assemblages in MIL 090340, MIL 090206, and many brachinite clan meteorites have superficial similarities to characteristic “reduction rims” in ureilites. However, they differ significantly in detail. They likely formed by reaction of olivine with S‐rich fluids, with only minor reduction. MIL 090340 and the granoblastic area of MIL 090206 are similar in modal mineralogy and texture to most brachinites, but have higher Fo values typical of brachinite‐like achondrites. The poikilitic pyroxene area of MIL 090206 is more typical of brachinite‐like achondrites. The majority of their properties suggest that MIL 090340 and MIL 090206 are residues of low‐degree partial melting. The poikilitic area of MIL 090206 could be a result of limited melt migration, with trapping and recrystallization of a small volume of melt in the residual matrix. These two samples are so similar in mineral compositions, Cr valence, and cosmic ray exposure ages that they could be derived from the same lithologic unit on a common parent body.  相似文献   

11.
Ureilites are carbon‐rich ultramafic (olivine + dominantly low‐Ca pyroxene) achondrites with poorly understood petrogenesis. One major problem concerns the origin of extensive variation in FeO content (olivine core Fo values ranging from approximately 75 to 95) among the individual ureilites. The two main competing hypotheses to explain this variation are: (1) equilibrium smelting, in which ureilite Fo values were established by pressure‐dependent (depth‐linked) carbon redox reactions on the ureilite parent body during partial melting; or (2) nebular inheritance, in which the variation in FeO contents was derived from ureilite precursors and was preserved during partial melting. The paper “Parent body depth‐pressure‐temperature relationships and the style of the ureilite anatexis” by Warren (2012) discusses a series of topics related to ureilite petrogenesis. In each case, an argument is presented within the context of smelting versus nonsmelting models. Collectively, these arguments create the impression that there are many valid arguments against smelting. The purpose of this comment is to point out flaws in some of these arguments, and/or to show that the issues they address are independent of smelting versus nonsmelting models. Both equilibrium smelting and nebular inheritance (simple anatexis) models face challenges in explaining all the properties of ureilites, but both remain viable.  相似文献   

12.
Abstract— Ureilites are coarse-grained ultramafic rocks whose petrography, mineral chemistry, lithophile element bulk chemistry, and Sm-Nd isotopic systematics suggest that they are highly fractionated igneous rocks and thus are products of common planetary differentiation processes. However, they also have primitive characteristics that are difficult to reconcile with extensive igneous processing. These include high abundances of siderophile elements, planetary-type noble gases, and the oxygen isotopic signature of unequilibrated solar system materials. The incongruity between igneous and primitive features constitutes the most important problem in understanding ureilite petrogenesis. In this review the petrographic, chemical, and isotopic characteristics of ureilites are summarized, and the petrogenetic implications of these characteristics are discussed. The most important constraints on ureilite petrogenesis are: 1) Ureilites have lost a basaltic complement; 2) Ureilites had a two-stage cooling history; 3) Ureilites are probably residues but partly crystallized from melts; 4) Ureilites are derived from a minimum of six reservoirs which were distinct in oxygen isotopic composition and did not equilibrate with one another; 5) A correlation between oxygen isotopic composition and mg ratio was established in ureilite parent material in the solar nebula; 6) If carbon-metal-silicate-CO/CO2 equilibrium was maintained then the mg ratios of ureilites were pressure/depth-dependent; however, if the pressure was sufficiently high (> 100–200 bars) that a CO/CO2 gas phase was not present then carbon and metal could have been at equilibrium with all ureilite mg ratios at the same pressure; 7) Ureilites either lost a low-melting temperature metal fraction or gained a refractory-rich metal component; 8) Primordial noble gases were retained in carbon in ureilites; 9) The ultramafic ureilite assemblage formed at ~4.55 Ga, but Sm-Nd and Rb-Sr isotopic systematics have been subsequently disturbed. Recently proposed models for ureilite petrogenesis are evaluated in terms of how well they satisfy these constraints; no models unequivocally satisfy all of them. Reconciling constraints 5 and 6 requires a large ureilite parent body.  相似文献   

13.
Abstract– The Northwest Africa (NWA) 1500 meteorite is an olivine‐rich achondrite containing approximately 2–3 vol% augite, 1–2 vol% plagioclase, 1 vol% chromite, and minor orthopyroxene, Cl‐apatite, metal and sulfide. It was originally classified as a ureilite, but is currently ungrouped. We re‐examined the oxygen three‐isotope composition of NWA 1500. Results of ultra‐high precision (~0.03‰ for Δ17O) laser fluorination analyses of two bulk chips, and high precision (~0.3‰) secondary ion mass spectrometry (SIMS) analyses of olivine and plagioclase in a thin section, show that the oxygen isotope composition of NWA 1500 (Δ17O = ?0.22‰ from bulk samples and ?0.18 ± 0.06‰ from 16 mineral analyses) is within the range of brachinites. We compare petrologic and geochemical characteristics of NWA 1500 with those of brachinites and other olivine‐rich primitive achondrites, including new petrographic, mineral compositional and bulk compositional data for brachinites Hughes 026, Reid 013, NWA 5191, NWA 595, and Brachina. Modal mineral abundances, texture, olivine and pyroxene major and minor element compositions, plagioclase major element compositions, rare earth element abundances, and siderophile element abundances of NWA 1500 are within the range of those in brachinites and, in most cases, well distinguished from those of winonaites/IAB silicates, acapulcoites/lodranites, ureilites, and Divnoe. NWA 1500 shows evidence of internal reduction, in the form of reversely zoned olivine (Fo ~65–73 core to rim) and fine‐grained intergrowths of orthopyroxene + metal along olivine grain margins. The latter also occur in Reid 013, Hughes 026, NWA 5191, and NWA 595. We argue that reduction (olivine→enstatite + Fe0 + O2) is the best hypothesis for their origin in these samples as well. We suggest that NWA 1500 should be classified as a brachinite, which has implications for the petrogenesis of brachinites. Fe‐Mn‐Mg compositions of brachinite olivine provide evidence of redox processes among bulk samples. NWA 1500 provides evidence for redox processes on a smaller scale as well, which supports the interpretation that these processes occurred in a parent body setting. SIMS data for 26Al‐26Mg isotopes in plagioclase in NWA 1500 show no 26Mg excesses beyond analytical uncertainties (1–2‰). The calculated upper limit for the initial 26Al/27Al ratio of the plagioclase corresponds to an age younger than 7 Ma after CAI. Compared to 53Mn‐53Cr data for Brachina ( Wadhwa et al. 1998b ), this implies either a much younger formation age or a more protracted cooling history. However, Brachina is atypical and this comparison may not extend to other brachinites.  相似文献   

14.
Abstract— The mid-infrared (4000–450 cm?1; 2.5–22.2 μm) transmission spectra of seven Antarctic ureilites and 10 Antarctic H-5 ordinary chondrites are presented. The ureilite spectra show a number of absorption bands, the strongest of which is a wide, complex feature centered near 1000 cm?1 (10 μm) due to Si-O stretching vibrations in silicates. The profiles and positions of the substructure in this feature indicate that Mg-rich olivines and pyroxenes are the main silicates responsible. The relative abundances of these two minerals, as inferred from the spectra, show substantial variation from meteorite to meteorite, but generally indicate olivine is the most abundant (olivine:pyroxene = 60:40 to 95:5). Both the predominance of olivine and the variable olivine-to-pyroxene ratio are consistent with the known composition and heterogeneity of ureilites. The H-5 ordinary chondrites spanned a range of weathering classes and were used to provide a means of addressing the extent to which the ureilite spectra may have been altered by weathering processes. It was found that, while weathering of these meteorites produces some weak bands due to the formation of small amounts of carbonates and hydrates, the profile of the main silicate feature has been little affected by Antarctic exposure in the meteorites studied here. The mid-infrared ureilite spectra provide an additional means of testing potential asteroidal parent bodies for the ureilites. At present, the best candidates include the subset of S-type asteroids having low albedos and weak absorption features in the near infrared.  相似文献   

15.
Abstract— A popular model for ureilites assumes that during anatexis in an asteroidal mantle, pressure‐buffered equilibrium smelting (partial reduction coincident with partial melting) engendered their conspicuous mafic‐silicate‐core mg diversity (75–96 mol%). Several mass‐balance problems arise from this hypothesis. Smelting inevitably consumes a large proportion of any plausible initial carbon while generating significant proportions of Fe metal and copious proportions of CO gas. The most serious problem concerns the yield of CO gas. If equilibrium smelting produced the ureilites' entire 21 mol% range in olivine‐core mg, the proportion of gas within the asteroidal mantle (assuming plausibly low pressure <˜80 bar) should have reached ≥85 vol%. Based on the remarkably stepwise cooling history inferred from ureilite texture and mineralogy, a runaway, CO‐leaky process that can loosely be termed smelting appears to have occurred, probably triggered by a major impact. The runaway scenario appears likely because, by Le Châtelier's principle, CO leakage would tend to accelerate the smelting process. Also, the copious volumes of gas produced by smelting would have led to explosive, mass‐leaky eruptions into the vacuum surrounding the asteroid. Loss of mass would mean diminution of interior pressure, which would induce further smelting, leading to further loss of mass (basalt), and so on. Such a disruptive runaway process may have engendered the ureilites' distinctive reduced olivine rims. But the only smelting, according to this scenario, was a short‐lived disequilibrium process that reduced only the olivine rims, not the cores; and the ureilites were cooling, not melting, during the abortive “smelting” episode.  相似文献   

16.
This work is the first detailed study of carbon phases in the ureilite Almahata Sitta (sample #7). We present microRaman data for diamond and graphite in Almahata Sitta, seven unbrecciated ureilites, and two brecciated ureilites. Diamond in Almahata Sitta was found to be distinct from that in unbrecciated and brecciated ureilites, although diamond in unbrecciated and brecciated ureilites is indistinguishable. Almahata Sitta diamond shows a peak center range of 1318.5–1330.2 cm?1 and a full width at half maximum (FWHM) range of 6.6–17.4 cm?1, representing a shock pressure of at least 60 kbar. The actual peak shock pressure may be higher than this due to postshock annealing, if shock synthesis is the source of ureilite diamonds. Diamond in unbrecciated and brecciated ureilites have peak center wave numbers closer to terrestrial kimberlite diamond, but show a wider range of FWHM than Almahata Sitta. The larger peak shift observed in Almahata Sitta may indicate the presence of lonsdaleite. Alternatively, the lower values in brecciated ureilites may be evidence of an annealing step either following the initial diamond‐generating shock or as a consequence of heating during reconsolidation of the breccia. Graphite in Almahata Sitta shows a G‐band peak center range of 1569.1–1577.1 cm?1 and a G‐band FWHM range of 24.3–41.6 cm?1 representing a formation temperature of 990 ± 120 °C. Amorphous carbon was also found. We examine the different theories for diamond formation in ureilites, such as chemical vapor deposition and shock origin from graphite, and explore explanations for the differences between Almahata Sitta and other ureilites.  相似文献   

17.
Abstract— Polymict ureilites contain various mineral and lithic clasts not observed in monomict ureilites, including plagioclase, enstatite, feldspathic melt clasts and dark inclusions. This paper investigates the microdistributions and petrogenetic implications of rare earth elements (REEs) in three polymict ureilites (Elephant Moraine (EET) 83309, EET 87720 and North Haig), focusing particularly on the mineral and lithic clasts not found in monomict ureilites. As in monomict ureilites, olivine and pyroxene are the major heavy (H)REE carriers in polymict ureilites. They have light (L)REE‐depleted patterns with little variation in REE abundances, despite large differences in major element compositions. The textural and REE characteristics of feldspathic melt clasts in the three polymict ureilites indicate that they are most likely shocked melt that sampled the basaltic components associated with ureilites on their parent body. Simple REE modeling shows that the most common melt clasts in polymict ureilites can be produced by 20–30% partial melting of chondritic material, leaving behind a ureilitic residue. The plagioclase clasts, as well as some of the high‐Ca pyroxene grains, probably represent plagioclase‐pyroxene rock types on the ureilite parent body. However, the variety of REE patterns in both plagioclase and melt clasts cannot be the result of a single igneous differentiation event. Multiple processes, probably including shock melting and different sources, are required to account for all the REE characteristics observed in lithic and mineral clasts. The C‐rich matrix in polymict ureilites is LREE‐enriched, like that in monomict ureilites. The occurrence of Ce anomalies in C‐rich matrix, dark inclusions and the presence of the hydration product, iddingsite, imply significant terrestrial weathering. A search for 26Mg excesses, from the radioactive decay of 26Al, in the polymict ureilite EET 83309 was negative.  相似文献   

18.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   

19.
We report in situ O isotope and chemical compositions of magnetite and olivine in chondrules of the carbonaceous chondrites Watson‐002 (anomalous CK3) and Asuka (A)‐881595 (ungrouped C3). Magnetite in Watson‐002 occurs as inclusion‐free subhedral grains and rounded inclusion‐bearing porous grains replacing Fe,Ni‐metal. In A‐881595, magnetite is almost entirely inclusion‐free and coexists with Ni‐rich sulfide and less abundant Ni‐poor metal. Oxygen isotope compositions of chondrule olivine in both meteorites plot along carbonaceous chondrite anhydrous mineral (CCAM) line with a slope of approximately 1 and show a range of Δ17O values (from approximately ?3 to ?6‰). One chondrule from each sample was found to contain O isotopically heterogeneous olivine, probably relict grains. Oxygen isotope compositions of magnetite in A‐881595 plot along a mass‐dependent fractionation line with a slope of 0.5 and show a range of Δ17O values from ?2.4‰ to ?1.1‰. Oxygen isotope compositions of magnetite in Watson‐002 cluster near the CCAM line and a Δ17O value of ?4.0‰ to ?2.9‰. These observations indicate that magnetite and chondrule olivine are in O isotope disequilibrium, and, therefore, not cogenetic. We infer that magnetite in CK chondrites formed by the oxidation of pre‐existing metal grains by an aqueous fluid during parent body alteration, in agreement with previous studies. The differences in Δ17O values of magnetite between Watson‐002 and A‐881595 can be attributed to their different thermal histories: the former experienced a higher degree of thermal metamorphism that led to the O isotope exchange between magnetite and adjacent silicates.  相似文献   

20.
Abstract— Several recent studies have shown that materials such as magnetite that formed in asteroids tend to have higher Δ17O (=δ17O ? 0.52 × δ18O) values than those recorded in unaltered chondrules. Other recent studies have shown that, in sets of chondrules from carbonaceous chondrites, Δ17O tends to increase as the FeO contents of the silicates increase. We report a comparison of the O isotopic composition of olivine phenocrysts in low‐FeO (≤Fa1) type I and high‐FeO (≥Fa15) type II porphyritic chondrules in the highly primitive CO3.0 chondrite Yamato‐81020. In agreement with a similar study of chondrules in CO3.0 ALH A77307 by Jones et al. (2000), Δ17O tends to increase with increasing FeO. We find that Δ17O values are resolved (but only marginally) between the two sets of olivine phenocrysts. In two of the high‐FeO chondrules, the difference between Δ17O of the late‐formed, high‐FeO phenocryst olivine and those in the low‐FeO cores of relict grains is well‐resolved (although one of the relicts is interpreted to be a partly melted amoeboid olivine inclusion by Yurimoto and Wasson [2002]). It appears that, during much of the chondrule‐forming period, there was a small upward drift in the Δ17O of nebular solids and that relict cores preserve the record of a different (and earlier) nebular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号