首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
Radiocarbon-dated pollen profiles are presented from two basins in Prato Spilla, near Val Parma in the northern Apennines. One basin contains a complete Holocene succession, the other a full Lateglacial to mid-Holocene record. The data provide the most comprehensive Lateglacial-early Holocene pollenstratigraphic succession yet reported from the northern Apennines accompanied by an internally consistent radiocarbon chronology. They provide fresh impetus for (a) a discussion of the strength of the Younger Dryas 'signal' in pollen-stratigraphic profiles from southern Europe, (b) an assessment of the palaeovegetation of northern Italy during the last glacial-interglacial transition, and (c) the altitude of the snowline in the region during the Younger Dryas.  相似文献   

2.
Krüger, L. C., Paus, A., Svendsen, J. I. & Bjune, A. E. 2011: Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas, 10.1111/j.1502‐3885.2011.00213.x. ISSN 0300‐9483. Two sediment sequences from Sunnmøre, northern W Norway, were pollen‐analytically studied to reconstruct the Lateglacial vegetation history and climate. The coastal Dimnamyra was deglaciated around 15.3 ka BP, whereas Løkjingsmyra, further inland, became ice‐free around 14 ka BP. The pioneer vegetation dominated by snow‐bed communities was gradually replaced by grassland and sparse heath vegetation. A pronounced peak in Poaceae around 12.9 ka BP may reflect warmer and/or drier conditions. The Younger Dryas (YD) cooling phase shows increasing snow‐bed vegetation and the local establishment of Artemisia norvegica. A subsequent vegetation closure from grassland to heath signals the Holocene warming. Birch forests were established 500–600 years after the YD–Holocene transition. This development follows the pattern of the Sunnmøre region, which is clearly different from the Empetrum dominance in the Lateglacial interstadial further south in W Norway. The Lateglacial oscillations GI‐1d (Older Dryas) and GI‐1b (Gerzensee) are hardly traceable in the north, in contrast to southern W Norway. The southern vegetation was probably closer to an ecotone and more susceptible to climate changes.  相似文献   

3.
Analyses of a sediment core from Highstead Swamp in southwestern Connecticut, USA, reveal Lateglacial and early Holocene ecological and hydrological changes. Lateglacial pollen assemblages are dominated by Picea and Pinus subg. Pinus, and the onset of the Younger Dryas (YD) cold interval is evidenced by higher abundance of Abies and Alnus viridis subsp. crispa. As climate warmed at the end of the YD, Picea and Abies declined and Pinus strobus became the dominant upland tree species. A shift from lacustrine sediment to organic peat at the YD–Holocene boundary suggests that the lake that existed in the basin during the Lateglacial interval developed into a swamp in response to reduced effective moisture. A change in wetland vegetation from Myrica gale to Alnus incana subsp. rugosa and Sphagnum is consistent with this interpretation of environmental changes at the beginning of the Holocene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A 13,100-year-long high-resolution pollen and charcoal record from Foy Lake in western Montana is compared with a network of vegetation and fire-history records from the Northern Rocky Mountains. New and previously published results were stratified by elevation into upper and lower and tree line to explore the role of Holocene climate variability on vegetation dynamics and fire regimes. During the cooler and drier Lateglacial period, ca 13,000 cal yr BP, sparsely vegetated Picea parkland occupied Foy Lake as well as other low- and high-elevations with a low incidence of fire. During the warmer early Holocene, from ca 11,000–7500 cal yr BP, low-elevation records, including Foy, indicate significant restructuring of regional vegetation as Lateglacial Picea parkland gave way to a mixed forest of Pinus-Pseudotsuga-Larix. In contrast, upper tree line sites (ca >2000 m) supported Pinus albicaulis and/or P. monticola-Abies-Picea forests in the Lateglacial and early Holocene. Regionally, biomass burning gradually increased from the Lateglacial times through the middle Holocene. However, upper tree line fire-history records suggest several climate-driven decreases in biomass burning centered at 11,500, 8500, 4000, 1600 and 500 cal yr BP. In contrast, lower tree line records generally experienced a gradual increase in biomass burning from the Lateglacial to ca 8000 cal yr BP, then reduced fire activity until a late Holocene maximum at 1800 cal yr BP, as structurally complex mesophytic forests at Foy Lake and other sites supported mixed-severity fire regimes. During the last two millennia, fire activity decreased at low elevations as modern forests developed and the climate became cooler and wetter than before. Embedded within these long-term trends are high amplitude variations in both vegetation dynamics and biomass burning. High-elevation paleoecological reconstructions tend to be more responsive to long-term changes in climate forcing related to growing-season temperature. Low-elevation records in the NRM have responded more abruptly to changes in effective precipitation during the late Holocene. Prolonged droughts, including those between 1200 and 800 cal yr BP, and climatic cooling during the last few centuries continues to influence vegetation and fire regimes at low elevation while increasing temperature has increased biomass burning in high elevations.  相似文献   

5.
Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone of the Usa basin, northeastern European Russia, were reconstructed using plant macrofossil and pollen evidence from a sediment core from Lake Llet-Ti. The pollen stratigraphy during the Younger Dryas (about 12 500-11 500 cal. yr BP) is characterized by pollen types indicative of treeless arctic vegetation, whereas the macrofossil evidence shows the occurrence of scattered spruce and birch trees around the lake. The Younger Dryas-early Holocene transition is characterized by a rapid increase in vegetation density, including an increase in the birch population, followed by the expansion of the spruce population at about 10 000 cal. yr BP. Dense spruce-birch forest dominated until 5000 cal. yr BP. Our results contribute to the debate about the Lateglacial environments in northern Russia, and illustrate the importance of plant macrofossil records in Lateglacial vegetation reconstructions.  相似文献   

6.
We document the Lateglacial to Holocene sedimentation and vegetation history of a small, infilled crater landform in the West‐Eifel Volcanic Field (WEVF; western Germany). We analysed geomorphological landform change, sedimentological and geochronological data, pollen, and plant macrofossils of a 16‐m‐long sediment core from the Eichholz Maar (EHM). The EHM erupted between ~20 and 15 ka ago (MIS 2). Lacustrine siliclastic infilling was completed about 7500 years ago. Lateglacial rates of sedimentation are generally 2 to 5 times higher than in other maar lakes of the WEVF. Local factors, therefore, overprint the relative efficacy of the climate‐controlled variance of sedimentation rates at the Lateglacial/Holocene transition. The predominance of local factors relates to inherent geomorphological process–response mechanisms that were triggered by the EHM eruption. Rapid crater infilling and its completion by the mid‐Holocene are attributed to a combination of small storage capacity and geomorphological activity. A late Boreal interval of significant lake‐level fall can, however, be attributed to a period of continental‐scale climate change as recorded in other European lacustrine settings. Our findings highlight the importance of utilizing geomorphological information to reveal the relative significance of local controls as opposed to climate control when investigating small‐sized lake settings with active sediment supply systems.  相似文献   

7.
Two radiocarbon-dated Lateglacial pollen diagrams from the Vale of Mowbray (northern Vale of York) are presented from sites in the lowlands between the washlands courses of the rivers Swale and Ure in North Yorkshire, an area with little previous palynological research despite its proximity to the Devensian glacial advance limits in eastern England. The profiles, from Snape Mires and Nosterfield, include the Loch Lomond Stadial (Younger Dryas) and the Holocene transition, while that from Snape Mires also includes the period from the early part of the Lateglacial Interstadial. This profile differs from most published Interstadial diagrams from the Yorkshire region in having a long-delayed expansion of tree and shrub taxa. Juniperus (juniper) remains important after vegetation development takes place and the pollen record includes evidence of two cold climate oscillations before the maximum development of Betula (birch) woodland near the end of the Lateglacial Interstadial. At both profiles Artemisia (mugwort) frequencies are lower during the Loch Lomond Stadial than at many regional sites, probably due to edaphic factors in these lowland locations. The two sites provide valuable environmental data that enable comparison between the more wooded Lateglacial vegetation to the south in the Vale of York and Humberside and the more open contemporaneous vegetation to the north in the Durham and Northumberland lowlands.  相似文献   

8.
《Quaternary Science Reviews》2003,22(5-7):453-473
Lateglacial and early Holocene (ca 14–9000 14C yr BP; 15–10,000 cal yr BP) pollen records are used to make vegetation and climate reconstructions that are the basis for inferring mechanisms of past climate change and for validating palaeoclimate model simulations. Therefore, it is important that reconstructions from pollen data are realistic and reliable. Two examples of the need for independent validation of pollen interpretations are considered here. First, Lateglacial-interstadial Betula pollen records in northern Scotland and western Norway have been interpreted frequently as reflecting the presence of tree-birch that has strongly influenced the resulting climate reconstructions. However, no associated tree-birch macrofossils have been found so far, and the local dwarf-shrub or open vegetation reconstructed from macrofossil evidence indicates climates too cold for tree-birch establishment. The low local pollen production resulted in the misleadingly high percentage representation of long-distance tree-birch pollen. Second, in the Minnesotan Lateglacial Picea zone, low pollen percentages from thermophilous deciduous trees could derive either from local occurrences of the tree taxa in the Picea/Larix forest or from long-distance dispersal from areas further south. The regionally consistent occurrence of low pollen percentages, even in sites with local tundra vegetation, and the lack of any corresponding macrofossil records support the hypothesis that the trees were not locally present. Macrofossils in the Picea zone represent tundra vegetation or Picea/Larix forest associated with typically boreal taxa, suggesting it was too cold for most thermophilous deciduous trees to grow. Any long-distance tree pollen is not masked by the low pollen production of tundra and Picea and Larix and therefore it is registered relatively strongly in the percentage pollen spectra.Many Lateglacial pollen assemblages have no recognisable modern analogues and contain high representations of well-dispersed ‘indicator’ taxa such as Betula or Artemisia. The spectra could have been derived from vegetation types that do not occur today, perhaps responding to the different climate that resulted from the different balance of climate forcing functions then. However, the available contemporaneous plant-macrofossil assemblages can be readily interpreted in terms of modern vegetation communities, suggesting that the pollen assemblages could have been influenced by mixing of locally produced pollen with long-distance pollen from remote vegetation types that are then over-represented in situations with low local pollen production. In such situations, it is important to validate the climate reconstructions made from the pollen data with a macrofossil record.  相似文献   

9.
A new pollen record from an upland lake in north-west Spain, Laguna de la Roya, spans the last ca 14,500 yrs and includes clear evidence of a Weichselian Lateglacial event correlative with the Younger Dryas. Pollen-climate response surfaces have been used to make quantitative reconstructions of palaeoclimate conditions at this and two other sites in the region. These reconstructions indicate that the climate was dry and cool during both the Late Weichselian and the Younger Dryas; in contrast, conditions during the Lateglacial Interstadial were relatively moist. During the early Holocene the climate was more continental in character than it has been for the last three millenia. Human activity has had a substantial impact upon the upland vegetation around Laguna de la Roya only during the last two millennia.  相似文献   

10.
Relative sea‐level (RSL) change is reconstructed for central Cumbria, UK, based on litho‐ and biostratigraphical analysis from the Lateglacial to the late Holocene. The RSL curve is constrained using ten new radiocarbon‐dated sea‐level index points in addition to published data. The sea‐level curve identifies a clear Lateglacial sea‐level highstand approximately 2.3 m OD at c. 15–17 k cal a BP followed by rapid RSL fall to below ?5 m OD. RSL then rose rapidly during the early Holocene culminating in a mid‐Holocene highstand of approximately 1 m OD at c. 6 k cal a BP followed by gradual fall to the present level. These new data provide an important test for the RSL predictions from glacial isostatic adjustment models, particularly for the Lateglacial where there are very little data from the UK. The new RSL curve shows similar broad‐scale trends in RSL movement predicted by the models. However, the more recent models fail to predict the Lateglacial sea level highstand above present reconstructed by the new data presented here. Future updates to the models are needed to reduce this mismatch. This study highlights the importance for further RSL data to constrain Lateglacial sea level from sites in northern Britain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Investigation of the sedimentary record of pre‐Alpine Lake Mondsee (Upper Austria) focused on the environmental reaction to rapid Lateglacial climatic changes. Results of this study reveal complex proxy responses that are variable in time and influenced by the long‐term evolution of the lake and its catchment. A new field sampling approach facilitated continuous and precisely controlled parallel sampling at decadal to sub‐annual resolution for µ‐XRF element scanning, carbon geochemistry, stable isotope measurements on ostracods, pollen analyses and large‐scale thin sections for microfacies analysis. The Holocene chronology is established through microscopic varve counting and supported by accelerator mass spectrometry 14C dating of terrestrial plant macrofossils, whereas the Lateglacial age model is based on δ18O wiggle matching with the Greenland NGRIP record, using the GICC05 chronology. Microfacies analysis enables the detection of subtle sedimentological changes, proving that depositional processes even in rather large lake systems are highly sensitive to climate forcing. Comparing periods of major warming at the onset of the Lateglacial and Holocene and of major cooling at the onset of the Younger Dryas reveals differences in proxy responses, reflecting threshold effects and ecosystem inertia. Temperature increase, vegetation recovery, decrease of detrital flux and intensification of biochemical calcite precipitation at the onset of the Holocene took place with only decadal leads and lags over a ca. 100 a period, whereas the spread of woodlands and the reduction of detrital flux lagged the warming at the onset of the Lateglacial Interstadial by ca. 500–750 a. Cooling at the onset of the Younger Dryas is reflected by the simultaneous reaction of δ18O and vegetation, but sedimentological changes (reduction of endogenic calcite content, increase in detrital flux) were delayed by about 150–300 a. Three short‐term Lateglacial cold intervals, corresponding to Greenland isotope substages GI‐1d, GI‐1c2 and GI‐1b, also show complex proxy responses that vary in time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This article is a detailed pollen analysis and accurate AMS chronology of the Lateglacial of two coastal sites in western Norway. The area was deglaciated around 14 600 cal. yr BP or shortly before. The earliest vegetation was open, with a pioneer mosaic of vegetation on mineral soils, including snowbed communities, and plants on wind-blown ridges. Later, more stable vegetation developed with Empetrum as an important constituent. Scattered tree birches were established in the area in the last part of the Bølling/Allerød (GI-1). The pollen record from Vassnestjern indicates three short-lasting cold periods: c . 14 050 to 13 900, 13 800 to 13 700 and 13 150 to 13 000 cal. yr BP. It has been suggested that the last-mentioned period, detected at both sites, corresponds with the Gerzensee/Killarney Oscillation. From about 12 750 cal. yr BP, the vegetation was affected by the Younger Dryas (GS-1) cooling, which caused the vegetation to break up and humus-soil communities to disappear. In the early Holocene, the humus-soil communities re-established and open birch forests developed. This Lateglacial vegetation development is broadly similar to the reconstructed vegetation development in other parts of southwestern Norway.  相似文献   

13.
《Quaternary Science Reviews》2007,26(19-21):2420-2437
Lateglacial environments at Hijkermeer, northwest Netherlands, were reconstructed by means of chironomid, diatom and pollen analyses. Diatom assemblages indicate that Hijkermeer was a shallow, oligo- to mesotrophic lake during this period. Pollen assemblages reflect the typical northwest European Lateglacial vegetation development and provide an age assessment for the record from the beginning of the Older Dryas (ca 14 000 calibrated 14C yr BP) into the early Holocene (to ca 10 700 calibrated 14C yr BP). The chironomid record is characterized by several abrupt shifts between assemblages typically found in mid-latitude subalpine to alpine lakes and assemblages typical for lowland environments. Based on the chironomid record, July air temperatures were reconstructed using a chironomid-temperature transfer-function from central Europe. Mean July air temperatures of ca 14.0–16.0 °C are inferred before the Older Dryas, of ca 16.0–16.5 °C during most of the Allerød, of ca 13.5–14.0 °C during the Younger Dryas, and of ca 15.5–16.0 °C during the early Holocene. Two centennial-scale decreases in July air temperature were reconstructed during the Lateglacial interstadial which are correlated with Greenland Interstadial events (GI)-1d and -1b. The results suggest that vegetation changes in the Netherlands may have been promoted by the cooler climate during GI-1d, immediately preceding the Older Dryas biozone, and GI-1b. The Hijkermeer chironomid-inferred temperature record shows a similar temperature development as the Greenland ice core oxygen isotope records for most of the Lateglacial and a good agreement with other temperature reconstructions available from the Netherlands. This suggests that chironomid-based temperature reconstruction can be successfully implemented in the Northwest European lowlands and that chironomids may provide a useful alternative to oxygen isotopes for correlating European lake sediment records during the Lateglacial.  相似文献   

14.
Environmental changes are reconstructed from a Lateglacial and early Holocene sequence at Conty, northern France. The molluscan succession is put into a chronostratigraphic framework supported by numerous radiocarbon dates. Malacofaunas from the Bølling chronozone are reported for the first time in northern France and show progressive expansion of marshy communities within organic deposits. This biozone ended in a calcareous silt with the appearance of several species of arctic-alpine affinities. These sedimentological and malacological data point to colder climatic conditions after 12 220 ± 90 BP, but before 11 640 ± 80 BP, allowing allocation to the Older Dryas event. The first part of the Allerød appears to have been drier and relatively stable. After 11 400 BP, a decline in species richness and diversity in the malacofaunas suggests increasing dryness. During the Younger Dryas, two molluscan biozones are identified in a homogeneous calcareous silt, reflecting an early wet phase followed by a drier episode. At the onset of the Holocene malacofaunas show a higher diversity, suggesting climatic improvement.  相似文献   

15.
A pollen‐based study from Tiny Lake in the Seymour‐Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740 ± 70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860 ± 50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour‐Belize Inlet Complex, on a meso‐ to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour‐Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi‐permanent air mass. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Investigations of Lateglacial to Early Holocene lake sediments from the Nahe palaeolake (northern Germany) provided a high-resolution palynological record. To increase the temporal resolution of the record a targeted search for cryptotephra was carried out on the basis of pollen stratigraphy. Three cryptotephra horizons were detected and geochemically identified as G10ka series tephra (a Saksunarvatn Ash), Vedde Ash and Laacher See Tephra. Here we present the first geochemically confirmed finding of the ash from the Laacher See Eruption in Schleswig-Holstein—extending the so far detected fallout fan of the eruption further to the north-west. These finds enable direct stratigraphical correlations and underline the potential of the site for further investigations.  相似文献   

17.
Transfer functions are an efficient tool for the quantitative reconstruction of past climate from low to mid‐elevation pollen sites. However, the application of existing methods to high‐altitude pollen assemblages frequently leads to unrealistic results. In the aim of understanding the causes of these biases, the standard ‘best modern analogue’ method has been applied to two high‐altitude pollen sequences to provide quantitative climate estimates for the Lateglacial and Holocene periods. Both pollen sequences (Laghi dell'Orgials, 2130 m, SW aspect and Lago delle Fate, 2240 m, E aspect) are located in the subalpine belt, on opposing sides of the St. Anna di Vinadio Valley (Italian Maritime Alps). Different results were obtained from the two sequences. The largest differences occurred in palaeotemperature reconstruction, with notable differences in both the values and trends at each site. These biases may be attributed to: (1) a lack of high elevation ‘best modern analogues’ in the database of modern samples; (2) the problem of pollen taxa that have multiple climatic significance; (3) problems related to the complexity of mountainous ecosystems, such as the phenomenon of uphill transport of tree pollen by wind. Possible improvements to the reconstruction process are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Prehistoric settlements are usually perceived as being in opposition to the natural development of the landscape. Indeed, for woodland snail assemblages in anthropogenic landscapes in central Europe, considerable impoverishment is typical. However, it remains unclear whether this has been caused by humans only or also by climate effects. From an archaeological point of view, the Moravian Karst is one of the classic prehistorical locations in central Europe, but with a more humid climate than the previously studied anthropogenic areas. To learn more about coexistence of humans and natural forests during the Lateglacial and Holocene, we analysed 11 mollusc successions covering this entire area, a unique data set for such a relatively small area. These mollusc successions show several specific features compared to the standard development known from other mid‐European areas. One is that although the Moravian Karst is not far from the Western Carpathians, Carpathian species appeared relatively late, only during the second half of the Holocene climatic optimum. Similarly, some western European and Alpine elements appeared later than expected. In contrast to this, however, a number of forest species with central European range appeared relatively early during the Lateglacial or Early Holocene. Two even survived the Last Glacial Maximum in the Moravian Karst. This would suggest an early occurrence of forest patches in a mosaic landscape. Humans have apparently inhabited this area since the Lateglacial amongst islands of forests, which later changed during the Boreal and then the climatic optimum into humid canopy forests. Thus, a mosaic of anthropogenic and natural habitats persisting in close vicinity was possible in rugged and humid landscapes practically until the Industrial Revolution.  相似文献   

20.
《Quaternary Science Reviews》1999,18(8-9):1061-1073
Important palynological sequences are reviewed from caves with archaeological interest in Mediterranean Spain. Upper Pleistocene sites include Abric Romanı́ and Abric de l’Arbreda in NE Spain, and in SE Spain Cueva de la Carihuela, Cova Beneito, Cueva de Perneras, Cueva del Algarrobo and the Holocene Cova de l’Or and Cova de les Cendres. Carihuela has the longest sequence, starting in the last interglacial and covering most of the last glaciation. A pre-Würm phase was followed by two glacial maxima separated by an interpleniglacial phase, and in the Lateglacial the Younger Dryas seems present. Whereas at Carihuela harsh pleniglacial conditions caused Mediterranean associations to disappear, in the milder surroundings of Beneito and Perneras these were able to survive. At Romanı́, pollen shows acute palaeoclimatic sensitivity, pointing to upland refuges nearby. Holocene pollen from Cova de l’Or and Cendres underlines the importance of pine in natural woodlands of mature meso and thermomediterranean taxa. Some between-site comparisons and contrasts with modern bioclimatology are interpreted in the context of the palaeoclimate history. Despite taphonomical and methodological problems of cave palynology, its future in arid regions such as SE Spain is promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号