首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— We report the first petrologic examination of all stone meteorites of Fayette County, Texas. The 10 stones represent four or five different fall events. The three recovered Bluff stones represent two falls. Bluff (a), which includes the 145.5-kg Bluff #1 stone, is classified as L5(S4), whereas Bluff (b) is classified as L4(S3) and is represented by a single stone. The studied Cedar stones are classified as H4(S3), and all four Cedar stones appear to define a strewnfield. Round Top (a), classified as L5(S3) and represented by two stones, is unrelated to either Bluff or Cedar. Round Top (b) [H4(S3); 1 stone], whose exact provenance is unknown, might be a transported fragment of the Cedar shower.  相似文献   

2.
Abstract— We have classified four new ordinary chondrites from Roosevelt County, New Mexico (RC 091–094) that were found in June and July of 1994 by I. Wilson. They include one H4(S2) and three L5(S4) chondrites. Degree of weathering is variable and ranges from W2–6.  相似文献   

3.
Abstract— We have classified 12 new, moderately to severely weathered meteorites from Roosevelt County, New Mexico (RC 079–090) that were recovered between 1969 and 1993. They include nine H chondrites and three L chondrites of petrologic types 4 to 6 and shock classification S1 to S4. Among these are a flight-oriented specimen of an H5 chondrite, an L4 chondrite with a porphyritic impact-melt rock clast, an H5 fragmental breccia with an unusual weathering assemblage (probably a Ca sulfate), and an H4 chondrite with unequilibrated pyroxenes.  相似文献   

4.
Abstract— The Meteoritical Bulletin No. 80 lists data for 178 meteorites. Noteworthy are 3 HED meteorites (ALH 88102, Hammadah al Hamra (HaH) 059, and Monticello); 3 ureilites (HaH 064, HaH 126, and Dar al Gani (DaG) 084); 4 irons (Baygorria (IAB), Ste. Croix (IIIAB), Sargiin Gobi (IAB), and Tarahumara (IIE)); an unusual metal-rich meteorite (Vermillion); 8 carbonaceous chondrites (HaH 043 (C03), HaH 073 (C4), DaG 055 (C3) and 5 C03 chondrites (probably paired) from DaG); an R chondrite (DaG 013); and 6 unequilibrated ordinary chondrites (ALH 88105 (L3), Camel Donga 016 (L3), HaH 093 (LL3.9), HaH 096 (LL(L)3), Richfield (LL3.7), and Sarir Quattusah (LL(L)3)). Three recent falls of ordinary chondrites (Coleman (LL5), St. Robert (H5), and Tsukuba (H5-6)) are described.  相似文献   

5.
Abstract— We report the histories and classifications of poorly known meteorites from the Oscar Monnig meteorite collection. Forestburg (a), Texas, is an L4(S2) ordinary chondrite. Forestburg (b), Texas, is a shock-blackened L5(S5) ordinary chondrite containing an impact-melt clast. Davy (a), Texas, L4(S2), is represented by several highly weathered stones. Davy (b), Texas, is a single stone classified as H4(S2). Harrison Township, Kansas, (L6(S4)) was found in the vicinity of several meteorites grouped as Ladder Creek but appears distinct. We have identified the second and largest fragment of the 1814 October Gurram Konda, India, L6(S3) meteorite fall and uncovered details of its early history.  相似文献   

6.
Abstract— We classified four ordinary chondrites from the Monnig Meteorite Collection into compositional groups, petrologic types and shock stages, based on optical microscopy in transmitted and reflected light, and electron microprobe and modal analyses. These meteorites are Allen, Texas, H4(S2); May Day, Kansas, H4(S2); Pony Creek, Texas, H4(S3); and Springer, Oklahoma, H5(S3).  相似文献   

7.
Abstract— Five small, weathered meteorites recovered from Roosevelt County, New Mexico, USA, are called Roosevelt County 066–070. Based on optical microscopy and electron microprobe analysis of mafic minerals, RC 066–070 are classified as L5a chondrites. RC 068 and 069 are tentatively paired. RC 066 and RC 067 are not paired with RC 068 and RC 069. RC 066, 067 and 070 do not appear to be paired with each other or with RC 001–031.  相似文献   

8.
Abstract— Four ordinary chondrites from the Oscar Monnig Meteorite Collection were classified into compositional groups, petrologic types, and shock stages: Wray (b), Colorado, L5S2; Round Top (a), Texas, L5S3; Round Top (b), Texas, H4S3; Hassayampa, Arizona, H4S3.  相似文献   

9.
Abstract— Roosevelt County (RC) 075 was recovered in 1990 as a single 258-gram stone. Classification of this meteorite is complicated by its highly unequilibrated nature and its severe terrestrial weathering, but we favor H classification. This is supported by O isotopes and estimates of the original Fe, Ni metal content. The O isotopic composition is similar to that of a number of reduced ordinary chondrites (e.g., Cerro los Calvos, Willaroy), although RC 075 exhibits no evidence of reduced mineral compositions. Chondrule diameters are consistent with classification as an L chondrite, but large uncertainties in chondrule diameters of RC 075 and poorly constrained means of H, L and LL chondrites prevent use of this parameter for reliable classification. Other parameters are compromised by severe weathering (e.g., siderophile element abundances) or unsuitable for discrimination between unequilibrated H, L and LL chondrites (e.g., Co in kamacite, δ13C). Petrologic subtype 3.2± 0.1 is suggested by the degree of olivine heterogeneity, the compositions of chondrule olivines, the thermoluminescence sensitivity, the abundances and types of chondrules mapped on cathodoluminescence mosaics, and the amount of presolar SiC. The meteorite is very weakly shocked (S2), with some chondrules essentially unshocked and, thus, is classified as an H3.2(S2) chondrite. Weathering is evident by a LREE enrichment due to clay contamination, reduced levels of many siderophile elements, the almost total loss of Fe, Ni metal and troilite, and the reduced concentrations of noble gases. Some components of the meteorite (e.g., type IA chondrules, SiC) appear to preserve their nebular states, with little modification from thermal metamorphism. We conclude that RC 075 is the most unequilibrated H chondrite yet recovered and may provide additional insights into the origin of primitive materials in the solar nebula.  相似文献   

10.
11.
Abstract— Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the pre-metamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Cañellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). We confirm that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Cañellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. These meteorites contain small melt rock clasts that were incorporated into the host chondrite while still molten and/or plastic and cooled rapidly and, yet, are totally equilibrated with their hosts. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibration of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.  相似文献   

12.
The Kumtag 016 strewn field was found in the eastern part of the Kumtag desert, Xinjiang Province, China. In this study, 24 recovered meteorites have been characterized by a suite of different analytical techniques to investigate their petrography, mineralogy, bulk trace elements, noble gas isotopic composition, density, and porosity. We attribute to the strewn field 22 L5 chondrites with shock stage S4 and weathering grade W2–W3. Two different meteorites, Kumtag 021, an L4 chondrite and Kumtag 032, an L6 chondrite, were recognized within the strewn field area. Moreover, Kumtag 003, an H5 chondrite, was previously found in the same area. We infer that the Kumtag 016 strewn field most likely consists of at least four distinct meteorite falls. The effects of terrestrial weathering on the studied meteorites involve sulfide/metal alteration, chemical changes (Sr, Ba, Pb, and U enrichments and depletion in Cr, Co, Ni, and Cs abundances), and physical modifications (decrease of grain density and porosity). Measurements of the light noble gases indicate that the analyzed Kumtag L5 samples contain solar wind-implanted noble gases with a 20Ne/22Ne ratio of ~12.345. The cosmic-ray exposure (CRE) ages of the L5 chondrites are in a narrow range (3.6 ± 1.4 Ma to 5.2 ± 0.4 Ma). For L4 chondrite Kumtag 021 and L6 chondrite Kumtag 032, the CRE ages are 5.9 ± 0.4 Ma and 4.7 ± 0.8 Ma, respectively.  相似文献   

13.
Abstract– A new method for assessing the shock stage of enstatite chondrites has been developed, using in situ micro‐X‐ray diffraction (μXRD) to measure the full width at half maximum (FWHMχ) of peak intensity distributed along the direction of the Debye rings, or chi angle (χ), corresponding to individual lattice reflections in two‐dimensional XRD patterns. This μXRD technique differs from previous XRD shock characterization methods: it does not require single crystals or powders. In situ μXRD has been applied to polished thin sections and whole‐rock meteorite samples. Three frequently observed orthoenstatite reflections were measured: (020), (610), and (131); these were selected as they did not overlap with diffraction lines from other phases. Enstatite chondrites are commonly fine grained, stained or darkened by weathering, shock‐induced oxidation, and metal/sulfide inclusions; furthermore, most E chondrites have little olivine or plagioclase. These characteristics inhibit transmitted‐light petrography, nevertheless, shock stages have been assigned MacAlpine Hills (MAC) 02837 (EL3) S3, Pecora Escarpment (PCA) 91020 (EL3) S5, MAC 02747 (EL4) S4, Thiel Mountains (TIL) 91714 (EL5) S2, Allan Hills (ALHA) 81021 (EL6) S2, Elephant Moraine (EET) 87746 (EH3) S3, Meteorite Hills (MET) 00783 (EH4) S4, EET 96135 (EH4–5) S2, Lewis Cliff (LEW) 88180 (EH5) S2, Queen Alexandra Range (QUE) 94204 (EH7) S2, LaPaz Icefield (LAP) 02225 (EH impact melt) S1; for the six with published shock stages, there is agreement with the published classification. FWHMχ plotted against petrographic shock stage demonstrates positive linear correlation. FWHMχ ranges corresponding to shock stages were assigned as follows: S1 < 0.7°, S2 = 0.7–1.2°, S3 = 1.2–2.3°, S4 = 2.3–3.5°, S5 > 3.5°, S6—not measured. Slabs of Abee (EH impact‐melt breccia), and Northwest Africa (NWA) 2212 (EL6) were examined using μXRD alone; FWHMχ values place both in the S2 range, consistent with literature values. Micro‐XRD analysis may be applicable to other shocked orthopyroxene‐bearing rocks.  相似文献   

14.
Abstract— Two rare, spinel-bearing, Al-rich chondrules have been identified in new chondrite finds from Roosevelt County, New Mexico—RC 071 (L4) and RC 072 (L5). These chondrules have unusual mineralogies, dominated by highly and asymmetrically zoned, Al-Cr-rich spinels. Two alternatives exist to explain the origin of this zoning—fractional crystallization or metamorphism. It appears that fractional crystallization formed the zoning of the trivalent cations (Al, Cr) and caused a localized depletion in chromites around the large Al-Cr-rich spinels. The origin of the zoning of the divalent cations (Fe, Mg, Zn) is less certain. Diffusive exchange and partitioning of Fe and Mg between olivine and spinel during parent body metamorphism can explain the asymmetric zoning of these elements. Unfortunately, appropriate studies of natural and experimental systems to evaluate the formation of zoning of the divalent cations by fractional crystallization have not yet been conducted. The bulk compositions of the chondrules suggest affinities with the Na-Al-Cr-rich chondrules, as would be expected from the abundance of Al-Cr-rich spinels. Melting of rare and unusual precursors produced the compositions of Na-Al-Cr-rich chondrules, possibly including a spinel-rich precursor enriched in Cr2O3 and ZnO. The two chondrules we studied have larger modal abundances of Al-Cr-rich spinels than reported in other Na-Al-Cr-rich chondrules of similar composition, and Al-rich chondrules even more enriched in spinel are reported in the literature. These differences indicate that factors other than bulk composition control the mineralogy of the chondrules. The most important of these factors are the temperature to which the molten chondrule was heated and the cooling rate during crystallization. These two chondrules cooled rapidly from near the liquidus, as indicated by the zoning, occurrence and sizes of spinels, radiating chondrule textures and localized chromite depletions. The range of mineralogies in other Al-rich chondrules of similar composition reflect a range of peak temperatures and cooling rates. We see no reason to believe that this range is fundamentally different from the range of thermal histories experienced by “normal” Fe-Mg-rich chondrules.  相似文献   

15.
We have detected interstellar hydrogen sulfide (H2S) toward the cold, dark clouds L134N and TMC 1. We derive total column densities of approximately 2.6 x 10(13) cm-2 and approximately 7.0 x 10(12) cm-2 at the SO peak of L134N and at the NH3 peak of TMC 1, respectively. Since the expected gas phase reactions leading to the formation of H2S are thought to be endothermic, grain surface reactions may play a major role in the synthesis of this species in cold, dark clouds. If the carbon abundance is high and grain surface reactions are the dominant formation route, H2CS would be expected to form instead of H2S, and the abundances of H2CS have been observed to be high where those of H2S are low in L134N and TMC 1.  相似文献   

16.
Abstract– We used instrumental neutron activation analysis and petrography to determine bulk and phase compositions and textural characteristics of 15 carbonaceous chondrites of uncertain classification: Acfer 094 (type 3.0, ungrouped CM‐related); Belgica‐7904 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Wisconsin Range (WIS) 91600, Dhofar 225, and Yamato‐86720); Dar al Gani (DaG) 055 and its paired specimen DaG 056 (anomalous, reduced CV3‐like); DaG 978 (type 3 ungrouped); Dominion Range 03238 (anomalous, magnetite‐rich CO3.1); Elephant Moraine 90043 (anomalous, magnetite‐bearing CO3); Graves Nunataks 98025 (type 2 or type 3 ungrouped); Grosvenor Mountains (GRO) 95566 (anomalous CM2 with a low degree of aqueous alteration); Hammadah al Hamra (HaH) 073 (type 4 ungrouped, possibly related to the Coolidge‐Loongana [C‐L] 001 grouplet); Lewis Cliff (LEW) 85311 (anomalous CM2 with a low degree of aqueous alteration); Northwest Africa 1152 (anomalous CV3); Pecora Escarpment (PCA) 91008 (anomalous, metamorphosed CM); Queen Alexandra Range 99038 (type 2 ungrouped); Sahara 00182 (type 3 ungrouped, possibly related to HaH 073 and/or to C‐L 001); and WIS 91600 (mildly metamorphosed, anomalous, CM‐like chondrite, possibly a member of a new grouplet that includes Belgica‐7904, Dhofar 225, and Y‐86720). Many of these meteorites show fractionated abundance patterns, especially among the volatile elements. Impact volatilization and dehydration as well as elemental transport caused by terrestrial weathering are probably responsible for most of these compositional anomalies. The metamorphosed CM chondrites comprise two distinct clusters on the basis of their Δ17O values: approximately ?4‰ for PCA 91008, GRO 95566, DaG 978, and LEW 85311, and approximately 0‰ for Belgica‐7904 and WIS 91600. These six meteorites must have been derived from different asteroidal regions.  相似文献   

17.
史忠先  吴琴娣 《天文学报》1999,40(2):142-148
通过对12-22周((1878-1995年)太阳大黑子群分布南北半球不对称的整体特征的研究,探讨了太阳活动周的长期演化趋势.约定N与S分别表示北南半球大黑子群数之和,BN与BS为北南半球大黑子群的纬度和.由这4个物理量定义了太阳活动周的3个参量:(1)太阳活动不对称指数AS=(N-S)/(N+S);(2)平均纬度BT=(BN+BS)/(N+S),BS取负值;(3)太阳活动带的宽度BW=BN/N-BS/S.对上述11个活动周,得到了有关80年周期的性质及奇偶数周大黑子群数变化的有意义的统计结果.  相似文献   

18.
Recent dynamical analyses of the Kuiper belt have introduced a rigorous classification scheme, determined the mean orbital plane, and identified “Core” and “Halo” populations as a function of inclination with respect to this plane (Elliot, J.L., Kern, S.D., Clancy, K.B., Gulbis, A.A.S., Millis, R.L., Buie, M.W., Wasserman, L.H., Chiang, E.I., Jordan, A.B., Trilling, D.E., Meech, K.J., 2005. Astron. J. 129, 1117-1162). Here, we use new observations and existing data to investigate the colors of Kuiper belt objects (KBOs) within this framework. With respect to the bulk KBO color distribution (all objects for which we have B-V and V-R colors; median B-R=1.56), we find that the population of objects classified following (Elliot, J.L., Kern, S.D., Clancy, K.B., Gulbis, A.A.S., Millis, R.L., Buie, M.W., Wasserman, L.H., Chiang, E.I., Jordan, A.B., Trilling, D.E., Meech, K.J., 2005. Astron. J. 129, 1117-1162) as Classical tends to be red (B-R>1.56) while the Scattered Near population is mostly neutral (B-R<1.56). Colors of Scattered Extended and Resonant objects are consistent with the bulk distribution. Separating objects into specific resonances demonstrates that the color of the Resonant sample is dominated by KBOs in the 3:2 resonance, which is consistent with previous findings. Unlike the objects in the 3:2 resonance, however, the majority of objects in the 5:2 resonance are neutral and all but one of the objects in the 4:3, 5:3, 7:4, 2:1, and 7:3 resonances are red. In particular, the objects in the 7:4 resonance are remarkably red. We find that the colors of KBOs in the Core (low-inclination) and Halo (high-inclination) are statistically different, with Core objects being primarily red and Halo objects having a slight tendency to be neutral. Notably, virtually all of the non-Resonant Core objects are red. This combination of low inclination, unperturbed orbits and red colors in the Core may be indicative of a relic grouping of objects.  相似文献   

19.
Bulk chemical and mineral analyses of five L6 chondrites of shock facies d to f bring the number of L6 falls analyzed by Jarosewich to 20 and enable us: 1) to examine the chemical effects of shock melting in chondrites of the same petrologic type that presumably sample a limited stratigraphic range in their parent body; and 2) to seek depth-related chemical variations by comparing the compositions of L3 and melt-free L6 chondrites. The mean Fe/Mg, Si/Mg, S/Mg and Ni/Mg ratios of melt-free L6 chondrites (shock facies a to c) are virtually identical to those of L3 chondrites, suggesting that L-group material had the same bulk composition early (L6) and late (L3) in the accretion of the parent body. Wider variations of S/Mg and Ni/Mg in L6 chondrites may signify that L6 material was less well mixed than L3, or that some mobilization of metal and troilite occurred at shock intensities (facies c) too low to melt silicates. L6 chondrites that experienced shock melting of silicates (facies d to f) show wide variations of Fe/Mg, Si/Mg, S/Mg and Ni/Mg. It appears that most of the major element variation in the L-group is tertiary (shock-related) rather than primary (nebular, accretionary) or secondary (metamorphic). There is some evidence that L-group chondrites comprise two subgroups with different Fe/S ratios, but these subgroups are now poorly defined and their significance is unknown.  相似文献   

20.
Abstract— High speed friction experiments have been performed on the ordinary chondrites El Hammami (H5, S2) and Sahara 97001 (L6, S3) using an axial friction‐welding apparatus. Each sample was subjected to a strain rate of 103 to 104 s?1, which generated 250 to 500 μm‐deep darkened zones on each sample cube. Thin section analyses reveal that the darkened areas are composed of silicate glass and mineral fragments intermingled with dispersed submicron‐size FeNi and FeS blebs. Fracturing of mineral grains and the formation of tiny metallic veins define the extent of deformation beyond the darkened shear zone. These features are not present in the original meteorites. The shear zones and tiny veins are quite similar to certain vein systems seen in naturally deformed ordinary chondrites. The experiments show that shock deformation is not required for the formation of melt veins and darkening in ordinary chondrites. Therefore, the presence of melt veins and darkening does not imply that an ordinary chondrite has undergone severe shock deformation. In fact, high strain rate deformation and frictional melting are especially important for the formation of veins at low shock pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号