首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen analysis of 3.25 m of late glacial and Holocene sediments gives a mid‐altitude (600 m) record of vegetation development after the last or Margaret Glaciation. Alpine herbfield, coniferous heath and Nothofagus gunnli scrub developed on the moraines until 11,400 BP. Wet montane forest and heath then developed with Phyllocladus aspleniifolius, Nothofagus cunninghamii and Eucalyptus until c. 10,000 BP. After 10,000 BP a mosaic of N. cunninghamii rainforest, Myrtaceae and Proteaceae scrub and Sprengelia incarnata heath occurred. The development of the vegetation from alpine communities to temperate rainforest, which is near its limit at 600 m, occurred under the influence of improving climatic conditions with rapid upslope migration or local expansion of taxa during the late glacial. Temperatures were warm enough for the development of rainforest at 600 m by 10,000 BP, if not earlier. The development of a mosaic of rainforest, scrub and heath vegetation rather than extensive rainforest after 10,000 BP reflects the influence of poor soils, bad drainage and fires. Comparison with similar pollen diagrams from western Tasmania suggests that the development of pollen/vegetation associations was time transgressive with altitude during the late glacial when climatic influences and migration rates were important, and that the mosaic of vegetation communities became more complex during the Holocene because of adjustment to or control by local ecological factors.  相似文献   

2.
Analysis of three‐dimensional (3D) seismic data from the headwall area of the Storegga Slide on the mid‐Norwegian margin provides new insights into buried mass movements and their failure mechanisms. These mass movements are located above the Ormen Lange dome, a Tertiary dome structure, which hosts a large gas reservoir. Slope instabilities occurred as early as the start of the Plio‐Pleistocene glacial–interglacial cycles. The 3D seismic data provide geophysical evidence for gas that leaks from the reservoir and migrates upward into the shallow geosphere. Sediments with increased gas content might have liquefied during mobilization of the sliding and show different flow mechanisms than sediments containing less gas. In areas where there is no evidence for gas, the sediments remained intact. This stability is inherited by overlying strata. The distribution of gas in the shallow subsurface (<600 m) may explain the shape of the lower Storegga headwall in the Ormen Lange area.  相似文献   

3.
张大林  刘希林 《热带地理》2014,34(2):133-140
崩岗复杂的地形及其动态发育过程是崩岗监测关注的重点和难点。三维激光扫描技术具有高精度、非接触性、穿透性、快速性等特点,能够突破传统监测手段的空间限制,有效获取崩岗地形的细部特征。在介绍基本原理和应用现状的基础上,利用Leica ScanStation 2三维激光扫描仪,对广东五华县莲塘岗崩岗进行连续3 a共6次实地监测。选择2011-06-03和2012-05-12两次监测结果,通过ArcGIS对数据进行处理分析。结果表明:莲塘岗崩岗体积侵蚀量为1 007 m3/a,年侵蚀量为1 380 t,侵蚀模数为269 268 t/(km2·a),崩岗中下部位侵蚀强度高于上部。侵蚀最强烈地带出现在中下部海拔高度为111~116 m和116~121 m的崩积锥分布部位,侵蚀量分别为202和178 m3/a,崩积锥土体松散,极易在片流和股流作用下出现侵蚀,崩积锥快速侵蚀导致崩壁加高,使得崩岗呈现出越高越陡的态势。此外,在崩岗下部96~101 m和101~106 m两个区段的侵蚀作用也比较强烈,侵蚀量分别为151和157 m3/a,这一高程区为多条支沟汇合后的主沟道段,每年雨季水力侵蚀十分强烈,沟道侧蚀加宽和下切加深,进一步加速崩岗的重力侵蚀过程,致使莲塘岗崩岗仍处于快速侵蚀和崩壁加高变陡的壮年期阶段。三维激光扫描连续监测结果的对比分析,不但能够定量得到崩岗侵蚀量及地形的变动信息,还可进一步探究侵蚀泥沙的来源及其精细的空间分布特征,是崩岗监测较为理想的先进技术。  相似文献   

4.
地表径流对荒漠灌丛生境土壤水分空间特征的影响   总被引:3,自引:2,他引:1  
李小军 《中国沙漠》2012,32(6):1576-1582
土壤水分是干旱区多尺度生态水文过程的关键影响因素和驱动因子,其时空格局是生态、水文、气象、地形等自然过程研究的重要参数。笔者研究了降水径流事件后3种不同灌丛个体尺度土壤水分空间异质性特征,结果表明,珍珠灌丛个体尺度土壤水分空间分布特征表现为灌丛边缘>灌丛内部>灌丛间裸地,驼绒藜灌丛表现为灌丛内部>灌丛边缘>灌丛间裸地,而狭叶锦鸡儿灌丛不同微生境土壤水分差异不显著。珍珠和驼绒藜灌丛同一微生境土壤水分存在坡位梯度,珍珠灌丛3个微生境土壤水分均表现为上坡位大于下坡位,而驼绒藜灌丛边缘表现为上坡位小于下坡位,其他两个微生境无明显规律;狭叶锦鸡儿灌丛土壤水分无明显的坡位梯度。3种灌丛不同微生境土壤含水量随土层深度增加的变化不明显。这说明在降水径流事件中,不同斑块的反应差异引起了地表径流的形成以及随之发生的资源再分配,从而导致了景观内土壤水分的空间异质性。  相似文献   

5.
位于北京西南57km的牛口峪水库建于奥陶系喀斯特化石灰岩之上。沿着区域性断层强烈的喀斯特作用使得水库发生严重渗漏,并污染了地下水体。根据水文地质条件和对水库渗漏的研究,可得出如下结论:1.牛口峪水库地区石灰岩含水体的特征主要受到牛口峪坡立谷演化过程的控制。地表下5—10m是喀斯特强烈发育带,但是充填在喀斯特裂隙中的红粘土降低了石灰岩含水体的导水性和储水能力。深于地表以下10m处,主要为裂隙含水体。石灰岩中的溶蚀裂隙和小管道沿着F_2断层发育。2.石灰岩含水体中存在着受库水影响较大的浅循环潜水流和深循环裂隙扩散流。3.牛14孔和牛11孔分属于两个水文地质单元,库水向牛11孔方向渗漏的可能性很小。4.库水主要通过表层灰岩体结构遭受破坏的石灰岩裂隙进行渗漏。最主要的渗漏带是牛14孔—牛10孔—马刨泉带,其次是水库—牛7孔—马刨泉带和四副坝坝基渗漏。主坝坝基深层石灰岩体中的渗漏是存在的,但不严重。  相似文献   

6.
Dozens of references recognizing pediment landforms in widely varying lithologic, climatic, and tectonic settings suggest a ubiquity in pediment forming processes on mountain piedmonts worldwide. Previous modeling work illustrates the development of a unique range in arid/semiarid piedmont slope (< 0.2 or 11.3°) and regolith thickness (2–4 m) that defines pediments, despite varying the initial conditions and domain characteristics (initial regolith thickness, slope, distance from basin to crest, topographic perturbations, and boundary conditions) and process rates (fluvial sediment transport efficiency and weathering rates). This paper expands upon the sensitivity analysis through numerical simulation of pediment development in the presence of spatially varying rock type, various base level histories, various styles of sediment transport, and various rainfall rates to determine how pediment development might be restricted in certain environments. This work suggests that in landscapes characterized by soil and vegetation types that favor incisive fluvial sediment transport styles coupled with incisive base level conditions, pediment development will be disrupted by the roughening of sediment mantled surfaces, thereby creating spatial variability in topography, regolith thickness, and bedrock weathering rates. Base level incision rates that exceed the integrated sediment flux along a hillslope derived from upslope weathering and sediment transport on the order of 10− 3 m y− 1 restrict pediment development by fostering piedmont incision and/or wholesale removal (stripping) of regolith mantles prior to footslope pediment development. Simulations illustrate an insensitivity to alternating layers of sandstone and shale 3–15 m thick oriented in various geometric configurations (vertical, horizontal, and dip-slope) and generating different regolith hydrologic properties and exhibiting weathering rate variations up to 3-fold. Higher fluxes and residence times of subsurface groundwater in more humid environments, as well as dissolution-type weathering, lead to a thickening of regolith mantles on erosional piedmonts on the order of 101 m and an elimination of pediment morphology. An initial test of the model sensitivity analysis in arid/semiarid environments, for which field reconnaissance and detailed geomorphic mapping indicate the presence of pediments controlled by climatic conditions (soil hydrologic properties, vegetation characteristics, and bedrock weathering style) that are known and constant, supports our modeling results that pediments are more prevalent in hydrologically-open basins.  相似文献   

7.
全球视野下崩岗侵蚀地貌及其研究进展   总被引:5,自引:1,他引:4  
典型的崩岗具有“圆形露天剧场”般的沟头,发育在深厚的红色花岗岩风化壳上,通常包括集水坡面、崩壁、崩积体、沟道、洪积扇5个地貌组成部分;崩壁自上而下可分为表土层、风化红粘土层(红土层)、风化砂质红粘土层(砂土层)、风化粗碎屑层(碎屑层)。中国的崩岗与马达加斯加的lavaka属于同类地貌,两者具有地貌学上的可比性。崩岗群是劣地的表现形式之一,但与欧洲的badland有不同的侵蚀过程,也不同于意大利和巴西的两种沟谷侵蚀地貌calanchi和vocoroca。崩岗主要发育在华南和东南热带和亚热带湿润季风气候区中等偏缓的丘陵坡地上,由沟谷侵蚀发展而成,是沟谷侵蚀的高级阶段。崩岗沟道侵蚀产沙量占崩岗沟谷流域侵蚀产沙量的一半以上,其中沟道沟壁崩塌侵蚀产沙量与沟床下切侵蚀产沙量又各占崩岗沟道侵蚀产沙量的一半左右。野外人工模拟降雨试验是研究崩岗流域侵蚀、产流和产沙过程的有效手段。崩岗流域侵蚀产沙量可以通过崩岗沟谷和洪积扇地形测量加以估算。  相似文献   

8.
Primary topographic attributes play a critical role in determining watershed hydrologic characteristics for water resources modeling with raster-based digital elevation models (DEM). The effects of DEM resolution on a set of important topographic derivatives are examined in this study, including slope, upslope contributing area, flow length and watershed area. The focus of the study is on how sensitive each of the attributes is to the resolution uncertainty by considering the effects of overall terrain gradient and bias from resampling. Two case study watersheds of different gradient patterns are used with their 10 m USGS DEMs. A series of DEMs up to 200 m grid size are produced from the base DEMs using three commonly used resampling methods. All the terrain variables tested vary with the grid size change. It is found that slope angles decrease and contributing area values increase constantly as DEMs are aggregated progressively to coarser resolutions. No systematic trend is observed for corresponding changes of flow path and watershed area. The analysis also suggests that gradient profile of the watershed presents an important factor for the examined sensitivities to DEM resolution.  相似文献   

9.
Soil profiles, colluvial stratigraphy, and detailed hillslope morphology are key elements used for geomorphic interpretations of the form and long-term evolution of triangular facets on a 1200 m high, tectonically active mountain front. The facets are developed on Precambrian gneisses and Tertiary volcanic and plutonic rocks along a complexly segmented, active normal-fault zone in the Rio Grande rift of northern New Mexico. The detailed morphologies of 20− to 350 m high facets are defined by statistical and time-series analyses of 40 field transects that were keyed to observations of colluvium, bedrock, microtopography, and vegetation. The undissected parts of most facets are transport-limited hillslopes mantled with varying thicknesses (0.1 to > 1 m thick) of sand and gravel colluvium between generally sparse (≤10–30%) bedrock outcrops. Facet soils range from (a) thin (≤ 0.2 m) weakly developed soils with cumulic silty A or transitional A/B epipedons above Cox horizons in bedrock or colluvium, to (b) deep (≥0.5–1 m) moderately to strongly developed profiles containing thick cambic (Bw) and/or argillic (Bt) horizons that commonly extend into highly weathered saprolitic bedrock. The presence of strongly weathered profiles and thick colluvium suggests that rates of colluvial transport and hillslope erosion are less than or equal to rates of soil development over at least a large part of the Holocene.The catenary variation of soils and colluvium on selected facet transects indicate that the degree of soil development generally increases and the thickness of colluvium decreases upslope on most facets. This overall pattern is commonly disrupted on large facet hillslopes by irregular secondary soil variations linked to intermediate-scale (20–60 + m long) concave slope elements. These features are interpreted to reflect discontinuous transport and erosion of colluvium down-slope below bedrock outcrops. The degree of weathering in subsurface bedrock commonly increases more systematically upslope on most facets than colluvial soils. This pattern is consistent with an increase in age with height on these fault-generated facet hillslopes.The characteristic range of internal variation in soils and colluvial deposits on a given facet also varies greatly among facets with differing overall morphologies and external environments. Deep cumulic soils and thick colluvium occur consistently on steep (≥ 30°), high, and relatively undissected facets above the narrow central sections of fault segments. Much thinner and less weathered colluvium and soils overlie saprolitic bedrock at shallow depths on low, highly dissected, gently sloping (≤ 20°) facets above complex fault segment boundaries. Parametric and nonparametric analyses of variance indicate that these large-scale contrasts in facet morphology correlate primarily with a few facet subgroups related, in decreasing importance, to variations in range-front faulting, bedrock lithology, and piedmont dissection or aggradation. These factors are related to facet morphology, drainage evolution, and hillslope-soil stratigraphy in a general geomorphic model for fault-generated facets. In this model, segmentation-related changes in the geometry and/or rates of faulting most strongly affect facet size, slope gradient, the thickness of colluvium and soil development, and drainage patterns. Facets of varying heights have similar hillslope forms at the same position on the range front; these characteristic morphologies are established under prevailing tectonic and nontectonic conditions on facets as bedrock is initially exposed from beneath alluvial-covered fault scarps above a height threshold of 15–35 m.  相似文献   

10.
The Quaternary to late Pliocene sedimentary succession along the margin of the South Caspian Basin contains numerous kilometre‐scale submarine slope failures, which were sourced along the basin slope and from the inclined flanks of contemporaneous anticlines. This study uses three‐dimensional (3D) seismic reflection data to visualise the internal structure of 27 mass transport deposits and catalogues the syndepositional structures contained within them. These are used to interpret emplacement processes occurring during submarine slope failure. The deposits consist of three linked structural domains: extensional, translational and compressive, each containing characteristic structures. Novel features are present within the mass transport deposits: (1) a diverging retrogression of the headwall scarp; (2) the absence of a conventional headwall scarp around growth stratal pinch outs; (3) restraining bends in the lateral margin; (4) a downslope increase in the throw of thrust faults. The results of this study shed light on the deformation that occurred during submarine slope failure, and highlight an important geological process in the evolution of the South Caspian Basin margin.  相似文献   

11.
According to the glacial landforms and deposits with the optically stimulated luminescence (OSL) dating results, two glacial stages of the last glacial cycle (LGC) and Late Glacial were identified. The Late Glacial stage (Meteorological Station glacier advance) took place about 11 ka (11.3±1.2 ka), and the last glacial maximum (LGM), named Black Wind Mouth glacier advance, occurred at 20 ka (20.0±2.1 ka). Based on the Ohmura’s formula in which there is a relationship between summer (JJA) atmospheric temperature (T) and the annual precipitation (P) at ELA, the present theoretical equilibrium line altitude (ELAt) in Changbai Mountains was 3380±100 m. Six methods of accumulation–area ratio (AAR), maximum elevation of lateral moraines (MELM), toe–to headwall altitude ratios (THAR), the terminal to summit altitudinal (TSAM), the altitude of cirque floor (CF), and the terminal to average elevation of the catchment area (Hofer) were used for calculation of the former ELAs in different stages. These methods provided the ELA for a range of 2250–2383 m with an average value of 2320±20 m during the LGM, which is 200 m higher than the value of previous investigation. The snowlines during the Late Glacial are 2490 m on northern slope, and 2440 m on western slope. The results show that the snowline on northern slope is 50 m higher than that on western slope during the Late Glacial, and the average snowline is 2465m. The ELA △ values were more than 1000 m during the LGM, and about 920 m lower than now during the Late Glacial stage respectively. Compared with Taiwanese and Japanese mountains in East Asia during the LGM, the effect of the uplift on ELA in Changbai Mountains during the glaciations (i.e. 20 m uplift in the LGM and 11 m in the Late Glacial) is not obvious.  相似文献   

12.
In this paper, we will present the stratigraphic evolution, internal facies architecture and geomorphology of the Middle Pleistocene Emme delta, controlled by rapid high‐amplitude lake‐level change. The Emme delta was deposited on the northern margin of glacial Lake Weser, located in north‐west Germany. Rates of lake‐level rise were probably >50 mm year?1 and rates of lake‐level fall 30–50 m within a few days or weeks, due to the opening of lake outlets. We use digital elevation models, sedimentology and shear wave seismics to improve earlier reconstructions and investigate the influence of rapid base‐level change on delta development. Shear wave seismic data resolve architectural elements in the range of metres and bridge the common gap between outcrop and conventional compression wave seismic data. The radial delta complex is about 2 km long, 1.8 km wide and up to 70 m thick, overlying a concave, up to 13° steep dipping ramp surface. It consists of vertically and laterally stacked delta lobes, caused by lobe switching during base‐level change. During the lake‐level rise, vertically stacked (Gilbert‐type) delta systems formed. The decrease in thickness and lateral extent indicates a rapid upslope shift of depocentres. A high rate and magnitude of lake‐level fall (50 m) promoted the development of a single incised valley and the deposition of forced regressive coarse‐grained delta lobes in front of the valley. The incised valley was filled during decreasing rates of lake‐level fall and low base‐level, because the alluvial gradient was larger than the emergent lake profile. Attached sand‐rich forced regressive aprons formed during lower magnitudes of lake‐level falls in the range of 30–35 m. Valley incision occurred, but was limited to the uppermost portion of the delta, controlled by the steep slope. The incised valley related to the final lake drainage is associated with long‐wavelength (60–90 m) bedforms at the downslope end, attributed to the formation of standing waves as a result of a hydraulic jump. Estimated palaeoflow depth during standing wave formation was ~9–14 m and flow velocity was 10–12 m s?1. Because subsidence, waves or tides did not play a major role, the Emme delta can be used as an analogue‐based predictive stratigraphical and sedimentological model for steep glacigenic deltas controlled by rapid base‐level change and can help to understand better the facies distribution and three‐dimensional geometry of these depositional systems.  相似文献   

13.
Jansson and Glasser (Jansson, K.N., Glasser, N.F., 2008. Modification of peripheral mountain ranges by former ice sheets: the Brecon Beacons, southern UK. Geomorphology 97, 178–189.) have recently provided unconventional interpretations of selected glacial erosional and depositional landforms in the Brecon Beacons, UK, based on remotely sensed imagery. These new interpretations contradict well-established and reliable evidence for the origins and ages of certain glacial landforms of this upland area and elsewhere. They suggest that during a post-Last Glacial Maximum (LGM) ice-sheet event ice flowed up supposed, essentially “fluvial” valleys producing “glacial lineations” and depositing marginal moraines at the valley heads and on cirque floors. We argue that their interpretations of some key landforms are incorrect and that they have ignored much of the previous dating and field geomorphological evidence. Sedimentary and morphological evidence (e.g., lack of erratic content; convex planform with respect to the headwall; relatively large height range of moraines; and close association with headwall extent, height, and steepness) all indicate that higher level cirque-floor and valley-head moraines in the Brecon Beacons (> c. 400 m) were formed by cirque glaciers. Available dating evidence indicates a Younger Dryas age. We demonstrate that the supposed “fluvial” valleys, comprising trough heads with steep headwalls, have more nearly parabolic than V-shaped cross profiles indicating substantial glacial modification. Field evidence shows that proposed key exemplar post-LGM glacial lineations are in fact debris flow deposits. We conclude that whilst the adoption of a macroscale approach can shed new light on large-scale, ice-sheet movements, this approach should not be undertaken without consideration of the associated field evidence.  相似文献   

14.
为了弥补岩溶区地下土壤漏失程度评价指标体系空白,基于在粤北岩溶区连南县多个岩溶山地采矿断面、公路修建断面实地调查获得的56条裂隙、40个漏斗和多个孔穴的调查数据,以及粤北岩溶丘陵、峰林区英德市岩背镇、九龙镇等40多个样方的地表景观实地调查资料,探讨构建岩溶地下土壤漏失程度评价指标与标准。首先,充分考虑了土壤漏失途径、阶段、各指标的关联性、断面调查数据及数据采集的可操作性等,将定性指标与量化指标结合,采用裂隙、洞穴、漏斗3个一级指标和与溶洞连通度、断面比、密度,洞穴类型、数量、位置,漏斗深宽比、形状、周边裂隙发育情况9个二级指标,构建了岩溶区地下漏失无漏失、轻度漏失、中度漏失、重度漏失分级标准;其次,将基岩、地貌、地形、岩石裸露率、植被结构、类型、盖度和土壤深度等地表景观特征作为地下漏失程度的辅助参考指标,使地下漏失评价与地表石漠化程度评价能够有机结合,共同形成岩溶环境评价的整体系统。  相似文献   

15.
潘永坚 《山地学报》2004,22(4):467-471
舟山大陆连岛工程西堠门大桥为一主跨跨度1650m的悬索桥,其北塔位于海中的老虎山上。因老虎山山体略显单薄,山体受数条断层及其他构造裂隙的影响,整体完整性中等到一般。在大量现场地质调查基础上,对老虎山南侧天然边坡稳定性进行分析研究,并提出相应加固建议措施。  相似文献   

16.
东北漫岗黑土区春季冻融期浅沟侵蚀   总被引:7,自引:0,他引:7  
浅沟侵蚀是东北漫岗黑土区农耕地上常见的水蚀类型,往往对坡耕地造成严重的破坏。2005年春季,通过对两个小流域浅沟侵蚀的调查测量,发现该区浅沟侵蚀相当严重,两流域分别形成浅沟14条、16条,浅沟总长度分别达3 269 m、2 146 m,浅沟密度分别为908 m/km2、766 m/km2,侵蚀深度分别为0.17 mm、0.16 mm,侵蚀模数分别达181.8 t/km2、173.6 t/km2。2005年春季两流域浅沟侵蚀期的径流深分别是6.8 mm、7.7 mm。分析表明,研究区在春季表层土壤解冻、地表裸露和存在季节性冻土层的条件下,春季融雪及强降水易造成强烈的浅沟侵蚀。在分布上,浅沟一般位于坡面的中下部,而且多发育在瓦背状坡面的集流水路上。另外,耕作措施对浅沟的形成和发展也有重要影响。  相似文献   

17.
Gurney, S.D. & Hayward, S. 2015. Earth hummocks in north-east Okstindan, northern Norway: Morphology, distribution and environmental constraints. Norsk Geografisk Tidsskrift–Norwegian Journal of Geography. ISSN 0029-1951.

Earth hummocks (also termed pounus or thúfur) are a common form of periglacial non-sorted patterned ground. The study objectives were to determine the morphology, distribution and development on slopes of earth hummocks in north-east Okstindan, Norway, an area with many hummocks but few documented accounts. The methodology involved detailed geomorphological mapping and precise measurement with a profileometer. The internal structure of the hummocks was investigated through excavations and sediment sample analyses. Fourteen sites with well-developed earth hummocks (accounting for over 650 individual hummock forms) were investigated. The sites have an average altitude of 750?m and occur on slopes with an average gradient of 7°. The hummock heights are in the range 0.11–0.52?m and their diameters 0.7–1.5?m, although coalescent forms are up to 5?m in length. The hummock morphology is characterised by a variable plan form, asymmetry with respect to upslope and downslope forms, downslope elongation, coalescence, and superimposed microtopography. The hummocks’ distribution appeared to have been controlled by the existence of a frost-susceptible ‘host’ sediment, but moisture availability and topographic position played a role. The authors conclude that differential frost heave and vegetation cover stability are critical for the hummocks’ longevity in the studied landscape.  相似文献   

18.
Carbon and nitrogen are crucial to semiarid woodlands, determining decomposition, production and redistribution of water and nutrients. Carbon and nitrogen are often greater beneath canopies than intercanopies. Upslope vs. downslope position and ephemeral channels might also cause variation in C and N. Yet, few studies have simultaneously evaluated spatial variation associated with canopy–intercanopy patches and topography. We estimated C and N upslope and downslope in an eroding piñon–juniper woodland for canopies beneath piñons (Pinus edulis) and junipers, (Juniperus monosperma), intercanopies, and ephemeral channels. Soil C and N in the surface and profile beneath canopies exceeded that of intercanopies and channels. Relative to intercanopies, channels had more profile C upslope but less downslope (profile N was not significant). Relative to upslope, profile C downslope for intercanopies was greater and for channels was less (profile N was not significant). Relative to profile, surface soil C and N exhibited less heterogeneity. Although some topographic heterogeneity was detected, results did not collectively support our redistribution hypotheses, and we are unable to distinguish if this heterogeneity is due to in situ or redistribution effects. Nonetheless, results highlight finer topographical spatial variation in addition to predominant canopy and intercanopy variation that is applicable for semiarid woodland management.  相似文献   

19.
地形指数的物理意义分析   总被引:34,自引:4,他引:34  
地形指数模型 ( TOPMODEL)用地形指数在流域中的空间格局来确定流域饱和缺水量的空间分布和产流区的空间位置与范围 ,物理意义明确。本文介绍了地形指数的物理基础及其与土壤水分的关系。分析了地形指数空间变化与汇流面积 a及局地坡度空间变化的关系 ,a范围内有效汇流面积的变化 ,提出了一种确定 a上限值的方法。  相似文献   

20.
Clinoforms are basinward-dipping and accreting palaeo-bathymetric profiles that record palaeo-environmental conditions and processes; thus, clinothems represent natural palaeo-archives. Here, we document shelf-edge scale clinoform sets which prograded through the entire width of an epicontinental marine basin (ca. 400 km), eventually encroaching onto the opposite basin flank, where they started to prograde upslope and landward, in defiance of gravity (“upslope-climbing clinoforms”). The giant westward-prograding Eridanos muddy shelf-edge clinothem originated from the Baltic hinterland in the Oligocene and achieved maximum regression in the Early Pleistocene, on the UK Central Graben (CG) and Mid North Sea High (MNSH), after crossing the whole North Sea mesopelagic depocentre and causing near complete basin infill. Here we integrate well and seismic data through the MNSH and CG and examine the Eridanos final heyday and demise, identifying five clinothem complexes (A1, A2, A3, B and C) and six depositional sequence boundaries (SB1 to SB6) in the Miocene-Recent section. Tectonic and climatic events drove the recent evolution of this system. Early Pleistocene climate cooling, in particular, resulted in a stepwise increase in sediment supply. This climaxed in the earliest Calabrian, following a likely Eburonian eustatic fall (=SB3) when the Eridanos clastic wedge was restructured from a 100–300 m thick compound shelf-edge and delta system to a “hybrid” shelf-edge delta at sequence boundary SB3 (ca. 1.75 Ma). In the ca. 40 kyr that followed SB3, a progradation rate peak (>1,000 m/kyr) is associated with clinoforms starting to accrete upslope, onto the east-dipping slope between CG and MNSH. This “upslope-climbing clinoform” phase was quickly followed by the maximum regression and final retreat of the Eridanos system in the Early Calabrian (=SB4), likely as the result of climate-driven changes in the Baltic hinterland and/or delta auto-retreat. To our knowledge, this contributions represents the first documentation of “upslope-climbing clinoforms” recorded in the stratigraphic record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号