首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
Giant pulses have been detected from the pulsar PSR B0031-07. A pulse with an intensity higher than that of the average pulse by a factor of 50 or more is encountered approximately once per 300 observed periods. The peak flux density of the strongest pulse was 530 Jy, which is a factor of 120 higher than the peak flux density of the average pulse. The giant pulses are a factor of 20 narrower than the integrated profile and are clustered about its center.  相似文献   

2.
Two investigations of millisecond pulsar radiation are discussed: average total intensity pulse morphology and individual pulse to pulse fluctuations. The average emission profiles of millisecond pulsars are compared with those of slower pulsars in the context of polar cap models. In general the full widths of pulsar emission regions continue to widen inversely with periodP as P-(0.30-0.5) as expected for dipole polar cap models. Many pulse components are very narrow. The period scaling of pulsar profiles -separations and widths -can tell us about the angular distribution of radiating currents. An investigation of individual pulses from two millisecond pulsars at 430 MHz shows erratic pulse to pulse variations similar to that seen in slow pulsars. PSR B1937+21 displays occasional strong pulses that are located in the trailing edge of the average profile with relative flux densities in the range of 100 to 400. These are similar to the giant pulses seen in the Crab pulsar.  相似文献   

3.
We detected giant pulses from the pulsar PSR B1112+50. A pulse with an intensity that is a factor of 30 or more higher than the intensity of the average pulse is encountered approximately once in 150 observed pulses. The peak flux density of the strongest pulse is about 180 Jy. This value is a factor of 80 higher than the peak flux density of the average pulse. The giant pulses are narrower than the average profile by approximately a factor of 5 and they cluster about the center of the average profile.  相似文献   

4.
We have carried out a survey for 'giant pulses' in six young, Vela-like pulsars. In no cases did we find single pulses with flux densities more than 10 times the mean flux density. However, in PSR  B1706–44  we have detected giant micro-pulses very similar to those seen in the Vela pulsar. In PSR  B1706–44  these giant micro-pulses appear on the trailing edge of the profile and have an intrinsic width of ∼1 ms. The cumulative probability distribution of their intensities is best described by a power law. If the power law continues to higher intensities, then  3.7×106  rotations are required to obtain a pulse with 20× the mean pulse flux. This number is similar to the giant pulse rate in PSR B1937+21 and PSR  B1821–24  but significantly higher than that for the Crab.  相似文献   

5.
We predict the synchrotron radiation from transient pulsars. The radiation is generated under the interaction of the magneto-dipole radiation with the relativistic electron-positron wind just after switching off of a radio pulsar. We calculate the spectrum and the flux of this radiation. The synchrotron radiation is estimated to observe from two nulling pulsars B1929+10 and B0656+14 on the level of several tens mJansky. The observed bright spiky emission of B0656+14 by Weltevrede et al. (Astron. Astrophys. 458:269, 2006) allows us to suggest that it has synchrotron nature. Observation of the synchrotron radiation gives possibility to determine the pulsar magnetic field and parameters and geometry of the pulsar wind.  相似文献   

6.
The possible discovery of three-ray pulsars 0656 + 14, 0950 + 08, and 1822 - 09 based on COS-B data analysis is reported. Their light curves, the other related features, and the methods leading to these results are also given. Among these three pulsars, PSR 0656 + 14 is the most significant one for being a-ray pulsar.  相似文献   

7.
In an earlier paper, based on simultaneous multifrequency observations with the Giant Metrewave Radio Telescope (GMRT), we reported the variation of pulsar dispersion measures (DMs) with frequency. A few different explanations are possible for such frequency dependence, and a possible candidate is the effect of pulse shape evolution on the DM estimation technique. In this paper we describe extensive simulations we have done to investigate the effect of pulse profile evolution on pulsar DM estimates. We find that it is only for asymmetric pulse shapes that the DM estimate is significantly affected due to profile evolution with frequency. Using multifrequency data sets from our earlier observations, we have carried out systematic analyses of PSR B0329+54 and PSR B1642−03. Both these pulsars have central core-dominated emission which does not show significant asymmetric profile evolution with frequency. Even so, we find that the estimated DM shows significant variation with frequency for these pulsars. We also report results from new, simultaneous multifrequency observations of PSR B1133+16 carried out using the GMRT in phased array mode. This pulsar has an asymmetric pulse profile with significant evolution with frequency. We show that in such a case, amplitude of the observed DM variations can be attributed to profile evolution with frequency. We suggest that genuine DM variations with frequency could arise due to propagation effects through the interstellar medium and/or the pulsar magnetosphere.  相似文献   

8.
An experiment has been performed at 325 MHz, with a 10 m tracking dish, for the search of pulsed radio emission associated with X-ray pulsars. No evidence of radio pulses has been found in the four sources investigated, although the radio pulsar PSR 0329+54, used as a testing object, has been detected successfully.  相似文献   

9.
Analysis of the arrival directions of extensive air showers (EASs) detected on the EAS MSU array and the prototype of the EAS-1000 array has revealed a region of enhanced flux of cosmic rays with PeV energies toward the pulsars PSR J1840+5640 and LAT PSR J1836+5925 at a confidence level up to 4.5σ. The first pulsar was discovered almost 30 years ago and is a well-studied old radio pulsar at a distance of 1.7 kpc from the Solar system. The second pulsar belongs to a new class of pulsars discovered by the Fermi Gamma-Ray Observatory whose pulsations are seen neither in the X-ray nor in the radio bands, but only in the gamma-ray energy range (gamma-ray-only pulsars). In our opinion, the existence of a region of enhanced cosmic-ray flux in the data sets obtained on two different arrays suggests that the pulsars can make a noticeable contribution to the flux of Galactic cosmic rays with PeV energies.  相似文献   

10.
The possible discovery of three new -ray pulsars PSR 0656+14, PSR 0950+08, and PSR 1822-09 (Ma, Lu, Yu, and Young, 1993) in data obtained with the COS-B experiment is reinvestigated using a refined technique for pulsar light curve analysis. The results of this study do not confirm the previously claimed -ray pulsar nature of any of these pulsars. Even when using the standard epoch folding technique in conjunction with energy-dependent acceptance cones, we do not detect pulsed -ray emission from these sources. We suspect that insufficient position accuracy is the cause for the discrepancy between our results and those of Maet al. (1993). We do not rule out that any one of the three candidates, or all of them, is in fact a -ray pulsar, but their spin properties must differ from those derived by Maet al. (1993). More work is needed to determine the correct high-energy properties of these three sources.  相似文献   

11.
We have detected the rare phenomenon of stable, drifting sub-pulse behaviour in two pulsars discovered in the recent Swinburne intermediate latitude pulsar survey. The pulsars, PSR     and PSR J1919+0134, have approximate periods ( P ) of 1.873 and 1.6039 s respectively.
Both pulsars have multicomponent profiles, and distinct drifting is observed across them. We have identified a single drift mode in both pulsars: the drift rate for PSR     being 5.4(1) ms P −1 and 5.8(2) ms P −1 for PSR 1919+0134. The drifting is linear across the profile with no departure from linearity at the edges within the sensitivity of our observations.  相似文献   

12.
We have detected giant pulses from the millisecond pulsar PSR B1937+214 at the lowest frequency of 112 MHz. The observed flux density at the pulse peak is ~40 000 Jy, which exceeds the average level by a factor of 600. Pulses of such intensity occur about once per 300 000 periods. The brightness temperature of the observed giant pulses is T B≈1035 K. We estimated the pulse broadening by interstellar scattering to be τsc=3–10 ms. Based on this estimate and on published high-frequency measurements of this parameter, we determined the frequency dependence of the pulse broadening by scattering: τsc(f)=25 × (f/100)?4.0±02.  相似文献   

13.
The pulsar time defined by a single pulsar is affected by several noises and in order to weaken their effects and acquire a much more stable time scale we define a synthetic pulsar time from many single pulsar times. Synthesis of the two pulsars, PSR B1855 + 09 and PSR B1937 + 21 is implemented by two methods: the classical weighting algorithm and the wavelet decomposition algorithm. The results are compared. The classical weighting algorithm is unable to take into consideration the different degrees of stability at different frequencies while the wavelet algorithm can, and thereby get better results.  相似文献   

14.
We report on searches of the globular cluster Terzan 5 for low-luminosity and accelerated radio pulsars using the 64-m Parkes radio telescope. One new millisecond pulsar, designated PSR J1748−2446C, was discovered, having a period of 8.44 ms. Timing measurements using the 76-m Lovell radio telescope at Jodrell Bank show that it is a solitary pulsar and lies close to the core of the cluster. We also present the results of timing measurements which show that the longer period pulsar PSR J1748−2444 (formerly known as PSR B1744−24B) lies 10 arcmin from the core of the cluster and is unlikely to be associated with the cluster. We conclude that there are further pulsars to be detected in the cluster.  相似文献   

15.
Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar-gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906−49; here we report on non-detections of PWNe towards PSRs B1046−58, B1055−52, B1610−50 and J1105−6107. Our radio observations of the field around PSR B1055−52 argue against previous claims of an extended X-ray and radio PWN associated with the pulsar. If these pulsars power unseen, compact radio PWNe, upper limits on the radio flux indicate that a fraction of less than 10−6 of their spin-down energy is used to power this emission. Alternatively, PSRs B1046−58 and B1610−50 may have relativistic winds similar to other young pulsars and the unseen PWN may be resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local interstellar medium (ISM) density of 2.2×10−3 and 1×10−2 cm−3, respectively. Furthermore, we derive the spatial velocities of these pulsars to be ∼450 km s−1 and thus rule out the association of PSR B1610−50 with supernova remnant (SNR) G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.  相似文献   

16.
We review the methodology of searches for planet-mass bodies around neutron stars observable as radio pulsars and discuss the current status of these searches. PSR B1257 + 12, a 6.2-millisecond pulsar, remains the only neutron star accompanied by confirmed planets. It is possible that there is a fourth distant planet in the 1257+12 system. The best of the other candidates for pulsar planets under consideration is a distant, possibly Jovian-mass companion to PSR B1620-26, a 11-millisecond pulsar in the globular cluster M4. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In this paper, we describe a novel experiment for the accurate estimation of pulsar dispersion measures (DMs) using the Giant Metrewave Radio Telescope. This experiment was carried out for a sample of 12 pulsars, over a period of more than one year (2001 January to 2002 May) with observations about once every fortnight. At each epoch, the pulsar DMs were obtained from simultaneous dual-frequency observations, without requiring any absolute timing information. The DM estimates were obtained from both the single-pulse data streams and from the average profiles. The accuracy of the DM estimates at each epoch is ∼1 part in 104 or better, making the data set useful for many different kinds of studies.
The time-series of DMs shows significant variations on time-scales of weeks to months for most of the pulsars. An analysis of the mean DM values from these data shows significant deviations from catalogue values (as well as from other estimates in the literature) for some of the pulsars, with PSR B1642−03 showing the most notable differences. From our analysis results it appears that the constancy of pulsar DMs (at the level of 1 in 103 or better) cannot be taken for granted. For PSR B2217+47, we see evidence of a large-scale DM gradient over a 1-yr period, which is modelled as being due to a blob of enhanced electron density sampled by the line of sight. For some pulsars, including pulsars with fairly simple profiles such as PSR B1642−03, we find evidence for small changes in DM values for different frequency pairs of measurement, a result that needs to be investigated in detail. Another interesting result is that we find significant differences in DM values obtained from average profiles and single-pulse data.  相似文献   

18.
From 2001 January to 2002 June, we monitored PSRs B0329+54, B0823+26, B1929+10, B2020+28 and B2021+51 using the Nanshan 25-m radio telescope of the Urumqi Observatory to study their diffractive interstellar scintillation (DISS). The average interval between observations was about 9 d and the observation duration ranged between 2 and 6 h depending on the pulsar. Wide variations in the DISS parameters were observed over the 18-month data span. Despite this, the average scintillation velocities are in excellent agreement with the proper motion velocities. The average two-dimensional autocorrelation function for PSR B0329+54 is well described by a thin-screen Kolmogorov model, at least along the time and frequency axes. Observed modulation indices for the DISS time-scale and bandwidth and the pulsar flux density are greater than values predicted for a Kolmogorov spectrum of electron density fluctuations. Correlated variations over times that are long compared to the nominal refractive scintillation time are observed, suggesting that larger scale density fluctuations are important. For these pulsars, the scintillation bandwidth as a function of frequency has a power-law index  (∼3.6)  much less than that expected for Kolmogorov turbulence (∼4.4). Sloping fringes are commonly observed in the dynamic spectra, especially for PSR B0329+54. The detected range of fringe slopes are limited by our observing resolution. Our observations are sensitive to larger-scale fringes and hence smaller refractive angles, corresponding to the central part of the scattering disc.  相似文献   

19.
The single glitch observed in PSR B1821−24, a millisecond pulsar in M28, is unusual on two counts. First, the magnitude of this glitch is at least an order of magnitude smaller  (Δν/ν∼ 10−11)  than the smallest glitch observed to date. Secondly, all other glitching pulsars have strong magnetic fields with   B ≳ 1011 G  and are young, whereas PSR B1821−24 is an old recycled pulsar with a field strength of  2.25 × 109 G  . We have earlier suggested that some of the recycled pulsars could actually be strange quark stars. In this work, we argue that the crustal properties of such a strange pulsar are just right to give rise to a glitch of this magnitude, explaining the scarcity of larger glitches in millisecond pulsars.  相似文献   

20.
Numerous studies of the brightest Cambridge pulsar, B1133+16, have revealed little order in its individual pulses, apart from a weak 30-odd-rotation-period fluctuation feature and that some 15 per cent of the star's pulsars are 'nulls'. New Arecibo observations confirm this fluctuation feature and that it modulates all the emission, not simply the 'saddle' region. By replacing each pulse with a scaled version of the average profile, we were able to quench all subpulse modulation and thereby demonstrate that the star's 'null' pulses exhibit a similar periodicity. A subbeam carousel model with a sparse and irregular 'beamlet' population appears to be compatible with these characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号