首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
New photoelectric UBV observations were obtained for the eclipsing binary TT Her at the Ankara University Observatory (AUO) and three new times of minima were calculated from these observations. The (OC) diagram constructed for all available times of minima of TT Her exhibits a cyclic character superimposed on a quadratic variation. The quadratic character yields an orbital period decrease with a rate of dP /dt = –8.83 × 10–8 day yr–1 which can be attributed to the mass exchange/loss mechanism in the system. By assuming the presence of a gravitationally bound third body in the system, the analysis of the cyclic nature in the (OC) diagram revealed a third body with a mass of 0.21M orbiting around the eclipsing pair. The possibility of magnetic activity cycle effect as a cause for the observed cyclic variation in the (OC) diagram was also discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The EF Boo eclipsing binary system is studied in the context of optical light curves and radial velocity curves published in the literature. The best‐solution leads to an over‐contact configuration of W–subclass of WUMa systems with a fill‐out factor of 28%. Absolute parameters based on simultaneous solution of light and radial velocity curves are presented. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
TZ Lyrae: an Algol-type Eclipsing Binary with Mass Transfer   总被引:1,自引:0,他引:1  
We present a detailed investigation of the Algol-type binary TZ Lyrae, based on 55 light minimum timings spanning 90 years. It is found that the orbital period shows a long-term increase with a cyclic variation superimposed. The rate of the secular increase is dP/dt = 7.18 × 10?8d yr?1, indicating that a mass transfer from the less massive component to the more massive one at a rate of dm = 2.21 × 10-8M⊙yr-1. The cyclic component, with a period of P3 = 45.5 yr and an amplitude of A = 0d.0040, may be interpreted as either the light-time effect in the presence of a third body or magnetic activity cycles in the components. Using the latest version Wilson-Devinney code, a revised photometric solution was deduced from B and V observations. The results show that TZ Lyr is an Algol-type eclipsing binary with a mass ratio of q = 0.297(±0.003). The semidetached configuration with a lobe-filling secondary suggests a mass transfer from the secondary to the primary, which is in agreement with the long-term period increase of the binary system.  相似文献   

5.
Photoelectric light curve (LC) solutions of the close binary system TW And were obtained using the PHOEBE program (version 0.31a). Absolute parameters of the stellar components were then determined, enabling us to discuss the structure and evolutionary status of TW And. The configuration of the system based on the LCs solutions indicates that the secondary component is slightly detached from its critical Roche surface. In addition, times of minima data (“OC curve”) were analyzed. Apart from an almost parabolic variation of the general trend of the OC data, indicative of a secular increase in the orbital period with a rate 0.032 s yr–1, which was attributed to a mass transfer with a rate of Δm2 = –1.10 × 10–10 M yr–1. Additionally, a sinusoidal variation with a period of 52.75 ± 1.80 yr, modulating the orbital period, was found, which we attribute to a third body orbiting the system. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10-7 d yr-1. The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.  相似文献   

7.
In this work, the analysis of the photoelectric light curve (LC) in the broad‐band filter (400–700 nm) for the UU And system was carried out using the PHOEBE program (vers. 0.31a). The absolute dimensions of the system are determined and its evolution is discussed. Moreover, the period changes of the system are studied using updated OC data, which shows a cyclic change with a period of Pmod = 18 yr. This was attributed to a magnetic activity cycle operating in this system. In addition to the cyclic change, a long‐term secular variation due to mass transfer from the secondary to the primary component with a rate of 6.17×10–9 M yr–1 was also detected. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We obtained CCD photometric observations of the Algol-type semidetached binary XX Cephei (XX Cep) during 15 nights from 2002 September 17 to 2003 February 2, and also on 2005 January 21. Except for those data taken on the last night of the concentrated observing season, the 3881 measurements were obtained over an interval of only 106 nights. From these data, four new times of minimum light were calculated. The  (O− C)  diagram formed from all available timings, and thus the orbital period of the system, can be partly represented as a beat effect between two cyclical variations with different periods (      yr,      yr) and amplitudes  ( K 1=0.015 d, K 2=0.103 d)  , respectively. Both physical and non-physical interpretations of these cycles were investigated. The long-term sinusoidal variation is too long for magnetic cycling in solar-type single and close binary stars. In addition, we have studied the effect of a possible secular period variation. By analysing the residuals from our Wilson–Devinney (WD) binary model, we found small light variations with a period of 5.99 d with amplitudes growing toward longer wavelengths. We think that these oscillations may be produced by instabilities at the systemic L 1 point (also occupied by the point of the cool star) and that these instabilities are, in turn, caused by non-uniform and sporadic convection. There is also a short-period oscillation of about 45 min in the WD light residuals that is attributed to accretion on to the mass-gaining primary component from a feeble gas stream originating on the cool donor star.  相似文献   

9.
The time sequence of 105 spectra covering one full orbital period of AA Dor has been analysed. Direct determination of   V  sin  i   for the sdOB component from 97 spectra outside of the eclipse for the lines Mg  ii 4481 Å and Si  iv 4089 Å clearly indicated a substantially smaller value than estimated before. Detailed modelling of line-profile variations for eight spectra during the eclipse for the Mg  ii 4481 Å line, combined with the out-of-eclipse fits, gave   V  sin  i = 31.8 ± 1.8 km s−1  . The previous determinations of   V  sin  i   , based on the He  ii 4686 Å line, appear to be invalid because of the large natural broadening of the line. With the assumption of the solid-body, synchronous rotation of the sdOB primary, the measured values of the semi-amplitude K 1 and   V  sin  i   lead to the mass ratio   q = 0.213 ± 0.013  which in turn gives K 2 and thus the masses and radii of both components. The sdOB component appears to be less massive than assumed before,   M 1= 0.25 ± 0.05 M  , but the secondary has its mass–radius parameters close to theoretically predicted for a brown dwarf,   M 2= 0.054 ± 0.010 M  and   R 2= 0.089 ± 0.005 R  . Our results do not agree with the recent determination of Vŭcković et al. based on a K 2 estimate from line-profile asymmetries.  相似文献   

10.
We report four new times of minimum light and the improved ephemeris for the well known contact binary AM Leo. The O‐C diagram, constructed with all reliable timings found in the literature was analyzed and the the light‐time effect in the system was confirmed. We found a periodicity of 44.82 years in the O‐C residuals with an amplitude of 0.0058 day. The periodic curve representing the O‐C values is asymmetric indicating a large eccentricity of 0.73 of the third body orbit. The mass of the third body is found to be 0.175 M for the orbital inclination of the eclipsing pair's orbit. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
New ephemeris and the absolute parameters—masses, radii and luminosities—of the contact systems VW LMi and BX Dra have been obtained, by means of the analysis of the minima data available in the literature (for the determination of the ephemeris) and combining the previously published spectroscopic information and the results of the Wilson-Devinney method using photometric data (for the determination of the absolute parameters). The VW LMi OC analysis confirms the multiplicity of the system detected previously from the spectroscopic data. Masses of the VW LMi contact system primary and secondary components are 1.67 ± 0.02M and 0.70 ± 0.02M , respectively. The corresponding radii are 1.709 ± 0.007R and 1.208 ± 0.006R , respectively. For the BX Dra contact system the masses are 2.19 ± 0.13M and 0.63 ± 0.06M , and the radii, 2.13 ± 0.04R and 1.26 ± 0.03R , for the primary and secondary, respectively. In both cases, the estimated luminosities seem to be slightly greater that the values derived from the Hipparcos distances.  相似文献   

12.
New light curves and photometric solutions of the contact binary AZ Vir are presented in this paper. The light curves appear to exhibit a typical O'Connell effect, with Maximum I being 0.021 mag (V) and 0.023 mag (B) brighter than Maximum II, respectively. From the observations, six times of minimum light were determined and from the present times of minimum light and those collected from the references, the light elements of the system were improved. The light curves were analyzed by means of the Wilson‐Devinney program. The results suggest that AZ Vir is a W‐subtype contact binary with a mass ratio of q = 0.623(2). The asymmetry of the light curves is explained by star spot models. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Five color UBVRI photometric and polarimetric measurements of the eclipsing binary VW Cyg are reported. It is shown that in the primary minimum the luminosity is attenuated (at short wavelengths) even after passage of the second contact. This fact is interpreted as evidence of gaseous structures in the system. The exchange of matter among the system components is also confirmed by the O-C curve constructed from data covering nearly a hundred years. Polarimetric analysis makes it possible to isolate the intrinsic (P=0.030±0.02) and interstellar components of the polarization. The UBVRI light curves of VW Cyg have been resolved. This was done using an algorithm for synthesizing theoretical light curves in the Roche model. Good agreement was obtained between the theoretical curves and observations in the V, R, and I bands, but the observed minimum depths in the U and B bands exceed the theoretical values. This appears to be caused by gas flows in the system.  相似文献   

14.
15.
New multi-color light curves of the very short period K-type eclipsing binary V1799 Ori were obtained and analyzed with the Wilson-Devinney code. The photometric solutions reveal that the system is a W-type shallow-contact binary with a mass ratio of q = 1.335(±0.005) and a degree of contact of about f = 3.5(±1.1)%.In general, the results are in good agreement with what is reported by Samec. Dramatic manifestations of the O'Connell effect that appear in the light curves can be explained well by employing starspots on the binary surface, which confirms that the system is active at present. Several new times of light minimum were obtained. All the available times of light minimum were collected, along with the recalculated and newly obtained values. Applying a least-squares method to the constructed O- C diagram,a new ephemeris is derived for V1799 Ori. The orbital period is found to show a continuous weak increase at a rate of 1.8(±0.6) × 10-8d yr-1. The extremely shallow contact, together with the period increase, suggests that the binary may be at a critical stage predicted by thermal relaxation oscillation theory.  相似文献   

16.
Results of the photometric analysis by means of the Wilson‐Devinney method, combined with an empirical massradius relation for LC IV stars support the hypothesis that GX Gem is a well detached evolved system of subgiant stars. The solution is consistent with the known spectroscopic parameters obtained by Popper (1996) and the photometric data of Lacy (2002a). (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
We present new CCD photometry of the solar-type contact binary IU Cnc, which was observed from November 2017 to March 2018 with three small telescopes in China. BV light curves imply that IU Cnc is a W-type contact binary with total eclipses. The photometric solution indicates that the mass ratio and fill-out factor are q = 4.104 ± 0.004 and f = 30.2%± 0.3%, respectively. From all available light minimum times, the orbital period may increase at a rate of dP/dt =+6.93(4)× 10^-7 d yr^-1, which may result from mass transfer from the secondary component to the primary one. With mass transferring,IU Cnc may evolve from a contact configuration into a semi-detached configuration.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号