首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isotopic compositions of Sr, Nd, Pb and O together withabundance data for Rb, Sr, Sm, Nd, U and Pb are reported forsamples from the component parts of the c. 400 Ma old EtiveComplex, temporally and spatially related Lorne and Glencoelavas, and the Dalradian country rocks into which the Complexhas been emplaced. These and published data available for otherCaledonian granites are used to evaluate the petrogenesis ofthe Etive Complex in particular, and the role of crustal recyclingin the generation and evolution of the Caledonian granites ingeneral. Nd-isotope compositions of Etive samples at 400 Ma range from – 9.9 to – 4.7 compared with–8.4 < – 3.2 for the associated volcanics investigated here, and an estimatedvalue for depleted mantle 400 Ma ago at approximately ? 7. Dalradiancountry rocks have – 23.4 < – 7.5 and two partially digested metasedimentaryxenoliths within the granite have values of –9. 3 and -4.0. Initial 87Sr/ 86Sr ratios forthe Etive Complex range from 0–7043 to 0–7079, whereasDalradian metasediment in the immediate vicinity of the granitehas an initial ratio of 0–726. Oxygen isotopes in theComplex have 7. 6 per mil <18O < 10.0 per mil, all inexcess of typical values of mantle oxygen and reflect a crustalcomponent. An upper limit of 25 per cent Dalradian assimilationis set by the Nd-Sr isotopic variations with the granites andxenoliths. The Etive complex parent magma prior to Dalradian xenolith assimilationis estimated to have values between – 10 and – 5. In order to satisfy the Srand Pb isotope composition, additional components from a deepersource within the lithosphere (lower crust or continental lithosphericmantle) with relatively unradiogenic Sr, Nd and Pb are required. The crustal residence ages of the Etive Complex average about1.5 Ga, similar to those of many other late and post-tectonicCaledonian granites. The generation of the Etive Complex andCaledonian granites in general has been dominated by recyclingof the continental lithosphere, rather than the addition ofnew material from asthenospheric sources.  相似文献   

2.
Field, petrologic and geochemical data were used to characterizefluid infiltration and partial melting during metamorphism ofpelitic rocks in the contact aureole of the Onawa pluton, centralMaine, USA. Mineral assemblages delineate five metamorphic zoneswithin the contact aureole: chlorite zone, andalusite–cordierite(a–c) zone, alkali feldspar zone, sillimanite zone andleucocratic-vein (l–v) zone. The sequence of observedmineral assemblages and mineral–fluid reactions calculatedby mass balance is similar to those observed in other contactaureoles. Pressure of contact metamorphism is 3 kbar, on thebasis of optimum geothermobarometry calculations. Metamorphictemperatures vary from 500C in the andalusite–cordieritezone to 65OC in the leucocratic-vein zone. Data from fieldobservations, mineral textures, observed reaction stoichiometry,geothermometry and major-element geochemistry suggest that theleucocratic veins of the l-v zone represent crystallized, partialmelts. Two overall calculated mineral reactions are responsiblefor vein formation: which can be modeled as combinations of two NKFMTASH meltingreactions: Progress of (M1) and (M2) was measured in eight samples, andreaction (M1) is the dominant melt-forming reaction in all samples.Partial melting (and vein formation) was therefore driven byinfiltration of the l-v zone by H2O-rich fluids. Calculatedtime-integrated fluid fluxes for l-v zone samples range from09 104 to 31 104 mol/cm2, and flow was in the directionof increasing temperature. KEY WORDS: pelites; contact metamorphism; fluid infiltration; partial melting; Onawa Pluton; Maine; USA *Corresponding author. Telephone:(516) 632–8192. Fax (516)632–8240 e-mail: gsymmes{at}ccmail.sunysb.edu  相似文献   

3.
The mutual solubility in the system corundum–hematite[-(Al, Fe3+)2O3] was investigated experimentally using bothsynthetic and natural materials. Mixtures of -Al2O3 and -Fe2O3(weight ratios of 8:2 and 10:1) were used as starting materialsfor synthesis experiments in air at 800–1300°C withrun times of 7–34 days. Experiments at 8–40 kbarand 490–1100°C were performed in a piston-cylinderapparatus (run times of 0·8–7·4 days) usinga natural diasporite consisting of 60–70 vol. % diasporeand 20–30 vol. % Ti-hematite. During the diasporite–corunditetransformation, the FeTiO3 component (12–18 mol %) ofTi-hematite only slightly increased, implying that oxygen fugacitywas maintained at high values. Run products were studied byelectron microprobe and X-ray diffraction (Rietveld) techniques.An essentially linear volume of mixing exists in the solid solutionwith a slight positive deviation at the hematite side. Up to1000°C, corundum contains <4 mol % Fe2O3 and hematite<10 mol % Al2O3; at 1200°C these amounts increase to9·3 and 17·0 mol %, respectively. At 1300°Chematite was no longer stable and coexists with the orthorhombic phase . The present results agree with corundum (solvus) compositions obtained inprevious studies but indicate a larger solubility of Al in hematite.The miscibility gap in the solution can be modelled with anasymmetric Margules equation with interaction parameters (2uncertainties): ; ; ; . Application of the corundum–hematite solution as a solvus geothermometer is limited because of thescarcity of suitable rock compositions. KEY WORDS: corundum; hematite; corundum–hematite miscibility gap; experimental study; Margules model; metabauxite  相似文献   

4.
ZINGG  A. J. 《Journal of Petrology》1996,37(3):471-496
The literature data of nine different occurrences of coexistingmineral pairs of Ca-amphibole have been studied and the bulkvectors, spanning the miscibility gap, derived. The additivecomponent is always impure Mg-tremolite accompanied by someglaucophane and cummingtonite component. The four major exchangecomponents required to describe the compositional variationin coexisting mineral pairs are the edenite (ED), tschermak's(TS), FeMg–1 and Fe3+-tschermak's (FeTs) vector. Trivalentiron is postulated on the basis of excess charges in the bulkvector the size of which coincides with residuals in Altet,–Si, Fe and –Mg. The four cations have equal sizes,forming the vector Fe3+ Altet Mg–1Si–1. This distributionscheme is consistent for all the different occurrences and setsthe basis for a comparison. Deviations from the scheme wouldradically complicate the proposed exchange pattern. The ratioTS:ED in most mineral samples fluctuates between one and two.Projection of the data points in the vector space TS–EDonto the line 1ED: 2TS (Tr–Hbl) or 1ED:1TS (Tr–Prg)provides the projected tremolite content (= 1–XHbl or = 1–Xprg). This parameter,applied to coexisting pairs, and plotted against the ratio Mg/(Mg+ Fe) shows some characteristic features about the miscibilitygap. In the Mg-pure system the solvus is almost symmetric andlocated in the temperature range between 800 and 870C. Smallamounts (0.10 pfu) of Fe2+ in the M(4) -sites and replacingCa have a dramatic effect, forcing the solvus to much lowertemperatures of 650C. An increase in the ratio Fe/(Fe + Mg)causes a shift of the solvus towards more tremolitic compositionswith temperatures 500–650C. The maximum asymmetry ofthe solvus is reached where the Al-poor member (tremolite) hasa composition of =1.0 and Mg/ (Mg + Fe) 0.6. The corresponding Al-rich member has =0.5 and Mg/ (Mg + Fe) 0.4. An anomalyof the solous is observed at Mg/ (Mg + Fe)=0.8. It manifestsas a kind of highly asymmetric ‘sub-gap’ in thetremolite-rich composition range. This is explained by the partitioningof Fe2+ into the single M(3) -site and is characterized by athermal hump to 650–700C. KEY WORDS: tremolite; hornblende; pargasite; immiscibility; solous  相似文献   

5.
BREY  G. P.; K?HLER  T. 《Journal of Petrology》1990,31(6):1353-1378
On the basis of experiments presented in Part I of this series,most of the published thermobarometers relevant to four-phaseperidotites are tested here for their ability to reproduce experimentalconditions. They were rejected if any systematic discrepancyin either pressure or temperature was discernible. This testcautions against the use of all published versions of thermometersbasad on the compositions of coexisting ortho- and clinopyroxenesand the use of existing barometers based on the Al content oforthopyroxene axxisting with garnet. Therefore, we formulatednew versions of the two-pyroxene thermometer and the Al-in-opxbarometer: with and is in degress Kelvin and P is in kilobars. Our new barometer is of the form (C1–C3) and site occupancies are given in the text. Temperatures may also be calculated from the Ca content of opxalone: This thermometer can be applied both to the CMS and the naturalsystem experiments, which may indicate that Fe and Na have counter-balancingeffects on the Ca content of opx. The partitioning of Na between opx and cpx can also serve asa useful thermometer, and was calibrated from natural rock data: where T is in degrees Kelvin, P is in kilobars, and DNa=Naopx/Nacpx. The following three published thermobarometers based on furtherexchange reactions are capable of reprducing experimental conditions:
  1. exchangeof Ca between olivine and clinopyroxene as a barometer(PKB),
  2. exchange of Fe and Mg between garnet and clinopyroxene asathermometer (TKrogh),
  3. exchange of Fe and Mg between garnetand olivine as a thermometer(TO'Neiii).
Our tests also show that the most accurate pressure and temperatureestimates arc obtained from the following combinations of thermometersand barometers:
  1. TBKN+PBKN,
  2. TBKN+PKB,
  3. TKrogh+PBKN,
  4. TO'Ne$$$ll+PBKN.
  相似文献   

6.
Significant petrogenetic processes governing the geochemicalevolution of magma bodies include magma Recharge (includingformation of ‘quenched inclusions’ or enclaves),heating and concomitant partial melting of country rock withpossible ‘contamination’ of the evolving magma body(Assimilation), and formation and separation of cumulates byFractional Crystallization (RAFC). Although the importance ofmodeling such open-system magma chambers subject to energy conservationhas been demonstrated, the effects of concurrent removal ofmagma by eruption and/or variable assimilation (involving imperfectextraction of anatectic melt from wall rock) have not been considered.In this study, we extend the EC-RAFC model to include the effectsof Eruption and variable amounts of assimilation, A. This model,called EC-E'RAFC, tracks the compositions (trace elements andisotopes), temperatures, and masses of magma body liquid (melt),eruptive magma, cumulates and enclaves within a composite magmaticsystem undergoing simultaneous eruption, recharge, assimilationand fractional crystallization. The model is formulated as aset of 4 + t + i + s coupled nonlinear differential equations,where the number of trace elements, radiogenic and stable isotoperatios modeled are t, i and s, respectively. Solution of theEC-E'RAFC equations provides values for the average temperatureof wall rock (Ta), mass of melt within the magma body (Mm),masses of cumulates (Mct), enclaves (Men) and wall rock () and the masses of anatectic melt generated () and assimilated (). In addition, t trace element concentrations and i + s isotopic ratios inmelt and eruptive magma (Cm, m, m), cumulates (Cct, m, m), enclaves(Cen, , ) and anatectic melt (Ca, , ) as a function of magma temperature (Tm) are also computed. Input parametersinclude the (user-defined) equilibration temperature (Teq),a factor describing the efficiency of addition of anatecticmelt () from country rock to host magma, the initial temperatureand composition of pristine host melt (, , , ), recharge melt (, , , ) and wall rock (, , , ), distribution coefficients (Dm, Dr, Da) and their temperaturedependences (Hm, Hr, Ha), latent heats of transition (meltingor crystallization) for wall rock (ha), pristine magma (hm)and recharge magma (hr) as well as the isobaric specific heatcapacity of assimilant (Cp,a), pristine (Cp,m) and recharge(Cp,r) melts. The magma recharge mass and eruptive magma massfunctions, Mr(Tm) and Me(Tm), respectively, are specified apriori. Mr(Tm) and Me(Tm) are modeled as either continuous orepisodic (step-like) processes. Melt productivity functions,which prescribe the relationship between melt mass fractionand temperature, are defined for end-member bulk compositionscharacterizing the local geologic site. EC-E'RAFC has potentialfor addressing fundamental questions in igneous petrology suchas: What are intrusive to extrusive ratios (I/E) for particularmagmatic systems, and how does this factor relate to rates ofcrustal growth? How does I/E vary temporally at single, long-livedmagmatic centers? What system characteristics are most profoundlyinfluenced by eruption? What is the quantitative relationshipbetween recharge and assimilation? In cases where the extractionefficiency can be shown to be less than unity, what geologiccriteria are important and can these criteria be linked to fieldobservations? A critical aspect of the energy-constrained approachis that it requires integration of field, geochronological,petrologic, and geochemical data, and, thus, the EC-ERAFC ‘systems’approach provides a means for answering broad questions whileunifying observations from a number of disciplines relevantto the study of igneous rocks. KEY WORDS: assimilation; energy conservation; eruption; open system; recharge  相似文献   

7.
A new thermobarometer, based on the equilibrium: has been calibrated with experiments carried out in the piston-cylinderapparatus. Reversed equilibria were obtained using well-calibrated2.54 cm NaCl furnace assemblies and Ag80Pd20capsules with fO2bufferedat or near iron-wustite. The equilibrium is located between5.2–5.4, 6.6–6.8, and 8.6–8.8 kb at 880, 940,and 1020?C, respectively, and at 5.2 and 8.8 kb between 865–880and 1020–1030?C, respectively. X-ray refinement data indicate that the hercynite (a = 8.15546?) has approximately 18 per cent inverse character. M?ssbauerspectra reveal that 4 mol per cent of the Fe is ferric (2 percent magnetite component). Broad Mossbauer lines and a Fe2+energy level splitting of 3.7 kJ mol–1 calculated fromthe Mossbauer spectra are consistent with the X-ray determineddegree of inversion, although no separate octahedral Fe2+ spectraldoublet is resolved. Calibration of this equation allows calculation of the equilibrium: Thermobarometers based on the above equilibria are widely applicablein granulite fades rocks and yield pressure/temperature datathat are consistent with other well-calibrated barometers andthermometers.  相似文献   

8.
The anhydrous phase relations of an uncontaminated (primitive),ferropicrite lava from the base of the Early Cretaceous Paraná–Etendekacontinental flood basalt province have been determined between1 atm and 7 GPa. The sample has high contents of MgO (14·9wt %), FeO* (14·9 wt %) and Ni (660 ppm). Olivine phenocrystshave maximum Fo contents of 85 and are in equilibrium with thebulk rock, assuming a of 0·32. A comparison of our results with previous experimental studiesof high-Mg rocks shows that the high FeO content of the ferropicritecauses an expansion of the liquidus crystallization field ofgarnet and clinopyroxene relative to olivine; orthopyroxenewas not observed in any of our experiments. The high FeO contentalso decreases solidus temperatures. Phase relations indicatethat the ferropicrite melt last equilibrated either at 2·2GPa with an olivine–clinopyroxene residue, or at 5 GPawith a garnet–clinopyroxene residue. The low bulk-rockAl2O3 content (9 wt %) and high [Gd/Yb]n ratio (3·1)are consistent with the presence of residual garnet in the ferropicritemelt source and favour high-pressure melting of a garnet pyroxenitesource. The garnet pyroxenite may represent subducted oceaniclithosphere entrained by the upwelling Tristan starting mantleplume head. During adiabatic decompression, intersection ofthe garnet pyroxenite solidus at 5 GPa would occur at a mantlepotential temperature of 1550°C and yield a ferropicriteprimary magma. Subsequent melting of the surrounding peridotiteat 4·5 GPa may be restricted by the thickness of theoverlying sub-continental lithosphere, such that dilution ofthe garnet pyroxenite melt component would be significantlyless than in intra-oceanic plate settings (where the lithosphereis thinner). This model may explain the limited occurrence offerropicrites at the base of continental flood basalt sequencesand their apparent absence in ocean-island basalt successions. KEY WORDS: continental flood basalt; ferropicrite; mantle heterogeneity; mantle melting; phase relations; pyroxenite  相似文献   

9.
Leucocratic and Gabbroic Xenoliths from Hualalai Volcano, Hawai'i   总被引:1,自引:0,他引:1  
A diverse range of crustal xenoliths is hosted in young alkalibasalt lavas and scoria deposits (erupted 3–5 ka) at thesummit of Huallai. Leucocratic xenoliths, including monzodiorites,diorites and syenogabbros, are distinctive among Hawaiian plutonicrocks in having alkali feldspar, apatite, zircon and biotite,and evolved mineral compositions (e.g. albitic feldspar, clinopyroxeneMg-number 67–78). Fine-grained diorites and monzodioritesare plutonic equivalents of mugearite lavas, which are unknownat Huallai. These xenoliths appear to represent melt compositionsfalling along a liquid line of descent leading to trachyte—amagma type which erupted from Huallai as a prodigious lava flowand scoria cone at 114 ka. Inferred fractionating assemblages,MELTS modeling, pyroxene geobarometry and whole-rock norms allpoint to formation of the parent rocks of the leucocratic xenolithsat 3–7 kbar pressure. This depth constraint on xenolithformation, coupled with a demonstrated affinity to hypersthene-normativebasalt and petrologic links between the xenoliths and the trachyte,suggests that the shift from shield to post-shield magmatismat Huallai was accompanied by significant deepening of the activemagma reservoir and a gradual transition from tholeiitic toalkalic magmas. Subsequent differentiation of transitional basaltsby fractional crystallization was apparently both extreme—culminatingin >5·5 km3 of trachyte—and rapid, at 2·75x 106 m3 magma crystallized/year. KEY WORDS: geothermobarometry; magma chamber; xenolith; cumulate; intensive parameters  相似文献   

10.
Aluminous granulites of the Archean (2?8 Ga) Kasai craton (Zaire)consist of two main mineral assemblages: Grt-Opx and Sil?Grt?Crdrocks. The high-grade metamorphic conditions as deduced from Grt-Opxand Grt-Opx-Pl-Qtz equilibria are 720?C-6?7 kb. Consideringthe zoning of the same minerals, the slope of the P-T path isestimated at 15 b/?C. Thermobarometry involving Crd is consistentwith those P-T conditions. Three cordierite-forming reactions have been observed petrographically: These equilibria are continuous reactions; end-member reactionshave slopes less than 15 b/?C; they are decompression reactionsoccurring after the metamorphic climax. Using available thermodynamic data, (R3) fixes the oxygen fugacityto a value below the QFM buffer (log10fO2 = – 17?6 at720?C, 6?7 kb and in the graphite stability field. The absence of graphite in the rocks showsthat the end of the granulite facies metamorphism did not occurunder important CO2 streaming. The polymetamorphic history of this Archean craton is considered.  相似文献   

11.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

12.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   

13.
Tourmaline in the Martinamor antiform occurs in tourmalinites(rocks with >15–20% tourmaline by volume), clasticmetasedimentary rocks of the Upper Proterozoic Monterrubio formation,quartz veins, pre-Variscan orthogneisses and Variscan graniticrocks. Petrographic observations, back-scattered electron (BSE)images, and microprobe data document a multistaged developmentof tourmaline. Overall, variations in the Mg/(Mg + Fe) ratiosdecrease from tourmalinites (0·36–0·75),through veins (0·38–0·66) to granitic rocks(0·23–0·46), whereas Al increases in thesame order from 5·84–6·65 to 6·22–6·88apfu. The incorporation of Al into tourmaline is consistentwith combinations of xAl(NaR)–1 and AlO(R(OH))–1exchange vectors, where x represents X-site vacancy and R is(Mg + Fe2+ + Mn). Variations in x/(x + Na) ratios are similarin all the types of tourmaline occurrences, from 0·10to 0·53, with low Ca-contents (mostly <0·10apfu). Based on field and textural criteria, two groups of tourmaline-richrocks are distinguished: (1) pre-Variscan tourmalinites (probablyCadomian), affected by both deformation and regional metamorphismduring the Variscan orogeny; (2) tourmalinites related to thesynkinematic granitic complex of Martinamor. Textural and geochemicaldata are consistent with a psammopelitic parentage for the protolithof the tourmalinites. Boron isotope analyses of tourmaline havea total range of 11B values from –15·6 to 6·8;the lowest corresponding to granitic tourmalines (–15·6to –11·7) and the highest to veins (1·9to 6·8). Tourmalines from tourmalinites have intermediate11B values of –8·0 to +2·0. The observedvariations in 11B support an important crustal recycling ofboron in the Martinamor area, in which pre-Variscan tourmaliniteswere remobilized by a combination of mechanical and chemicalprocesses during Variscan deformation, metamorphism and anatexis,leading to the formation of multiple tourmaline-bearing veinsand a new stage of boron metasomatism. KEY WORDS: tourmalinites; metamorphic and granitic rocks; mineral chemistry; whole-rock chemistry; boron isotopes  相似文献   

14.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   

15.
Bulk-rock geochemical compositions of hypabyssal kimberlites,emplaced through the Archaean Kaapvaal craton and ProterozoicNamaqua–Natal belt, are used to estimate close-to-primarymagma compositions of Group I kimberlites (Mg-number = 0·82–0·87;22–28 wt % MgO; 21–30 wt % SiO2; 10–17 wt% CaO; 0·2–1·7 wt % K2O) and Group II kimberlites(Mg-number = 0·86–0·89; 23–29 wt %MgO; 28–36 wt % SiO2; 8–13 wt % CaO; 1·6–4·6wt % K2O). Group I kimberlites are distinguished from GroupII by their lower Ba/Nb (<12), Th/Nb (<1·1) andLa/Nb (<1·1) but higher Ce/Pb (>22) ratios. Thedistinct rare earth element patterns of the two types of kimberlitesindicate a more highly metasomatized source for Group II kimberlites,with more residual clinopyroxene and less residual garnet. Thesimilarity of Sr and Nd isotope ratios and diagnostic traceelement ratios (Ce/Pb, Nb/U, La/Nb, Ba/Nb, Th/Nb) of Group Ikimberlites to ocean island basalts (OIB), but more refractoryMg-numbers and Ni contents, are consistent with derivation ofGroup I kimberlites from subcontinental lithospheric mantle(SCLM) that has been enriched by OIB-like melts or fluids. Sourceenrichment ages and plate reconstructions support a direct associationof these melts or fluids with Mesozoic upwelling beneath southernAfrica of a mantle plume(s), at present located beneath thesouthern South Atlantic Ocean. In contrast, the geochemicalcharacteristics of both on- and off-craton Group II kimberlitesshow strong similarity to calc-alkaline magmas, particularlyin their Nb and Ta depletion and Pb enrichment. It is suggestedthat Group II kimberlites are derived from both Archaean andProterozoic lithospheric mantle source regions metasomatizedby melts or fluids associated with ancient subduction events,unrelated to mantle plume upwelling. The upwelling of mantleplumes beneath southern Africa during the Mesozoic, at the timeof Gondwana break-up, may have acted as a heat source for partialmelting of the SCLM and the generation of both Group I and GroupII kimberlite magmas. KEY WORDS: kimberlite; geochemistry; petrogenesis; mantle plumes; South Africa  相似文献   

16.
A Barometer for Garnet Amphibolites and Garnet Granulites   总被引:5,自引:5,他引:5  
new barometer based on the equilibrium: has been calibrated with experiments conducted in the piston-cylinderapparatus. Reversed equilibria have been obtained using well-calibrated2-54 cm NaCl furnace assemblies, Ag80Pd20capsules withfO2 bufferedat or near iron-wustite. The equilibrium is located between10.6–10.8,12.0–12.2, 13.2–13.4 and 14.2–14.4kb, at 800, 900, 1000, and 1100?C, respectively. The barometer is applicable in both garnet-bearing amphibolitesand granulites. Its greatest potential is in garnet amphiboliteswherein multi-variant amphibole-bearing mineral assemblagesdo not define pressure and few, if any, well-calibrated barometersare available. Application of the garnet-rutile-ilmenite-plagioclase-quartzbarometer in amphibolite and granulite terranes yields geologicallyreasonable pressures that are in agreement with other well-calibratedbarometers in those terranes where comparisons can be made.  相似文献   

17.
The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle   总被引:5,自引:0,他引:5  
A detailed petrological and geochemical study of low-temperatureperidotite xenoliths from Kimberley and northern Lesotho ispresented to constrain the processes that led to the magmaphileelement depletion of the Kaapvaal cratonic lithospheric mantleand its subsequent re-enrichment in Si and incompatible traceelements. Whole-rocks and minerals have been characterized forRe–Os isotope compositions, and major and trace elementconcentrations, and garnet and clinopyroxene for Lu–Hfand Sm–Nd isotope compositions. Most samples are characterizedby Archaean Os model ages, low Al, Fe and Ca contents, highMg/Fe, low Re/Os, very low (< 0·1 x chondrite) heavyrare earth element (HREE) concentrations and a decoupling betweenNd and Hf isotope ratios. These features are most consistentwith initial melting at 3·2 Ga followed by metasomatismby hydrous fluids, which may have also caused additional meltingto produce a harzburgitic residue. The low HREE abundances ofthe peridotites require that extensive melting occurred in thespinel stability field, possibly preceded by some melting inthe presence of garnet. Fractional melting models suggest that30% melting in the spinel field or 20% melting in the garnetfield followed by 20% spinel-facies melting are required toexplain the most melt-depleted samples. Garnet Nd–Hf isotopecharacteristics indicate metasomatic trace element enrichmentduring the Archaean. We therefore suggest a model includingshallow ridge melting, followed by metasomatism of the Kaapvaalupper mantle in subduction zones surrounding cratonic nuclei,probably during amalgamation of smaller pre-existing terranesin the Late Archaean (2·9 Ga). The fluid-metasomatizedresidua have subsequently undergone localized silicate meltinfiltration that led to clinopyroxene ± garnet enrichment.Calculated equilibrium liquids for clinopyroxene and their Hf–Ndisotope compositions suggest that most diopside in the xenolithscrystallized from an infiltrating kimberlite-like melt, eitherduring Group II kimberlite magmatism at 200–110 Ma (Kimberley),or shortly prior to eruption of the host kimberlite around 90Ma (northern Lesotho). KEY WORDS: Kaapvaal craton; lithospheric mantle; metasomatism; Nd–Hf isotopes; Re–Os isotopes  相似文献   

18.
The pressure-temperature-compositional (P-T-X) dependence ofthe solubility of Al2O3 in orthopyroxene coexisting with garnethas been experimentally determined in the P-T range 5–30kilobars and 800–1200 ?C in the system FeO—MgO—Al2O3—SiO2(FMAS). These results have been extended into the CaO—FeO—MgO—Al2O3—SiO2(CFMAS) system in a further set of experiments designed to determinethe effect of the calcium content of garnet on the Al2O3 contentsof coexisting orthopyroxene at near-constant Mg/(Mg + Fe). Startingmaterials were mainly glasses of differing Mg/(Mg + Fe) or Ca/(Ca+ Mg + Fe) values, seeded with garnet and orthopyroxene of knowncomposition, but mineral mixes were also used to demonstratereversible equilibrium. Experiments were performed in a piston-cylinderapparatus using a talc/pyrex medium. Measured orthopyroxene and corrected garnet compositions werefitted by multiple and stepwise regression techniques to anequilibrium relation in the FMAS system, yielding best-fit,model-dependent parameters Goy= –5436 + 2.45T cal mol–1,and WM1FeA1= –920 cal mol–1. The volume change ofreaction, Vo, the entropy change, So970 and the enthalpy changeHo1,970, were calculated from the MAS system data of Perkinset al. (1981) and available heat capacity data for the phases.Data from CFMAS experiments were fitted to an expanded equilibriumrelation to give an estimate of the term WgaCaMg = 1900 ? 400cal/mole cation, using the other parametric values already obtainedin FMAS. The experimental data allow the development of a arnet-orthopyroxenegeobarometer applicable in FMAS and CFMAS: where This geobarometer is applicable to both pelitic and metabasicgranulites containing garnet orthopyroxene, and to garnet peridoditeand garnet pyroxenite assemblages found as xenoliths in diatremesor in peridotite massifs. It is limited, however, by the necessityof an independent temperature estimate, by errors associatedwith analysis of low Al2O3 contents in orthopyroxenes in high-pressureor low-temperature parageneses, and by uncertainties in thecomposition of garnet in equilibrium with orthopyroxene. Ananalysis of errors associated with this formulation of the geobarometersuggests that it is subject to great uncertainty at low pressuresand for Fe-rich compositions. The results of application ofthis geobarometer to natural assemblages are presented in acompanion paper.  相似文献   

19.
Dehydration-melting experiments from 10 to 20 kbar were performedon a metavolcanoclastic rock containing (in vol. %) biotite(16), amphibole (15) and epidote (13) in addition to plagioclaseand quartz. At 10 and 12.5 kbar traces of biotite and epidoteremain at 850C, amphibole becomes more abundant, and the meltfraction is 5–10 vol. %. These relationships reflect thatthe thermal stability of biotite is lowered in the presenceof epidote through the dehydration-melting reaction biotite+epidote+quartz=amphibole+garnet+alkalifeldspar+melt. Amphibole dehydration-melting produces an additional25 vol. % melt between 875 and 925C. At 15 kbar and 875C themelt fraction is 22 vol. %, amphibole is present in trace amounts,and biotite constitutes 8 vol. %. These relationships suggestthat the curves marking biotite- and amphibole-out intersectclose to 15 kbar, and that the fertility of the rock increasesfrom 10 to 15 kbar at 850C. At 20 kbar the melt fraction isonly 5 vol. % at 850C, amphibole is transformed to omphaciteand biotite constitutes 5% of the mode. This result shows thatthe fertility decreases from 15 to 20 kbar at 850C, mainlybecause much Na is locked up in omphacite. Along active continentalmargins, intrusion of hot mantle-derived magmas is common, andmelting of metavolcanoclastic rocks may be an important granitoid-formingprocess. Intersection of the amphibole- and biotite-out reactionsbetween 12.5 and 15 kbar suggests that fusion of biotite- andhornblende-bearing rocks can produce magmas ranging in compositionfrom granitic (biotite dehydration-melting) to granodioritic(amphibole dehydration-melting) in either order depending onpressure. KEY WORDS: amphibole; biotite; dehydration-melting; epidote; metavolcanoclastic rock *Corresponding author.  相似文献   

20.
The Grønnedal-Ika complex is dominated by layered nephelinesyenites which were intruded by a xenolithic syenite and a centralplug of calcite to calcite–siderite carbonatite. Aegirine–augite,alkali feldspar and nepheline are the major mineral phases inthe syenites, along with rare calcite. Temperatures of 680–910°Cand silica activities of 0·28–0·43 weredetermined for the crystallization of the syenites on the basisof mineral equilibria. Oxygen fugacities, estimated using titanomagnetitecompositions, were between 2 and 5 log units above the fayalite–magnetite–quartzbuffer during the magmatic stage. Chondrite-normalized REE patternsof magmatic calcite in both carbonatites and syenites are characterizedby REE enrichment (LaCN–YbCN = 10–70). Calcite fromthe carbonatites has higher Ba (5490 ppm) and lower HREE concentrationsthan calcite from the syenites (54–106 ppm Ba). This isconsistent with the behavior of these elements during separationof immiscible silicate–carbonate liquid pairs. Nd(T =1·30 Ga) values of clinopyroxenes from the syenites varybetween +1·8 and +2·8, and Nd(T) values of whole-rockcarbonatites range from +2·4 to +2·8. Calcitefrom the carbonatites has 18O values of 7·8 to 8·6and 13C values of –3·9 to –4·6. 18Ovalues of clinopyroxene separates from the nepheline syenitesrange between 4·2 and 4·9. The average oxygenisotopic composition of the nepheline syenitic melt was calculatedbased on known rock–water and mineral–water isotopefractionation to be 5·7 ± 0·4. Nd and C–Oisotope compositions are typical for mantle-derived rocks anddo not indicate significant crustal assimilation for eithersyenite or carbonatite magmas. The difference in 18O betweencalculated syenitic melts and carbonatites, and the overlapin Nd values between carbonatites and syenites, are consistentwith derivation of the carbonatites from the syenites via liquidimmiscibility. KEY WORDS: alkaline magmatism; carbonatite; Gardar Province; liquid immiscibility; nepheline syenite  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号