首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
The Qinling Orogen in Central China records the history of a complex geological evolution and tectonic transition from compression to extension during the Late Mesozoic,with concomitant voluminous granitoids formation.In this study,we present results from petrological,geochemical,zircon U-Pb-Lu-Hf isotopic studies on the Lengshui felsic dykes from Luanchuan region in the East Qinling Orogen.We also compile published geochronological,geochemical,and Hf isotopic data from Luanchuan region and present zircon Hf isotopic contour maps.The newly obtained age data yield two group of ages at~145 Ma and 140 Ma for two granite porphyries from the Lengshui felsic dykes,with the ~145 Ma interpreted as response to the peak of magmatism in the region,and the ~140 Ma as the timing of formation of the felsic dykes.The corresponding Hf isotopic data of the granite porphyries display negativeeHit)values of-16.67 to-4.61,and Hf crustal model ages(T_(DM~C_)of 2255-1490 Ma,indicating magma sourced from the melting of Paleo-to Mesoproterozoic crustal materials.The compiled age data display two major magmatic pulses at 160-130 Ma and 111-108 Ma with magmatic quiescence in between,and the zircon Hf isotopic data display/ε_(Hf)(t)values ranging from-41.9 to 2.1 and T_(DM)~c values of3387-1033 Ma,suggesting mixed crustal and mantle-derived components in the magma source,and correspond to multiple tectonic events during the Late Mesozoic.The Luanchuan granitoids are identified as 1-type granites and most of these are highly fractionated granites,involving magma mixing and mingling and crystal fractionation.The tectonic setting in the region transformed from the Late Jurassic syn-collision setting to Early Cretaceous within-plate setting,with E-W extension in the Early Cretaceous.This extension is correlated with the N-S trending post-collisional extension between the North China Craton and Yangtze Craton as well as the E-W trending back-arc extension triggered by the westward Paleo-Pacific Plate subduction,eventually leading to lithospheric thinning,asthenospheric upwelling,mafic magma underplating,and crustal melting in the East Qinling Orogen.  相似文献   

2.
The Western Kunlun Orogen occupies a key tectonic position at the junction between the Tarim block and the Tethyan domain. However, the late Paleozoic to early Mesozoic, especially the middle to late Triassic tectonic evolution history of the Western Kunlun Orogen remains controversial. This study reports SHRIMP zircon U–Pb ages and geochemical as well as Sr–Nd–Hf isotopic data for middle to late Triassic Taer pluton in Western Kunlun Orogen, Northwest China. The Taer pluton shows a strong bimodal distribution of compositions, with the felsic rocks dominant and the mafic rocks subordinate. Zircon U–Pb dating reveals that the coexisting mafic and felsic rocks are coeval, both emplacing in a period between 234 and 225 Ma. Most of the studied rocks are potassium rich and can be classified into high-K calc-alkaline to shoshonitic series. They are also strongly enriched in LREE, LILE and depleted in HFSE with strong negative Ti and Nb anomalies, and characterized by enriched Sr–Nd–Hf isotopic signatures. Detailed geochemical and isotopic studies indicate that the Taer pluton was emplaced in a post-collisional extensional setting, with the mafic rocks derived from partial melting of the enriched continental lithospheric mantle in the spinel facies field, and the felsic rocks formed by anatexis of newly underplated basaltic rocks. The existence of middle to late Triassic post-collisional magmas in Western Kunlun region suggests that the final closure of Paleo-Tethys and the initial collision between the Western Kunlun and the Qiangtang terranes may have happened before ~234 Ma, most probably in late Permian, rather than in late Triassic or early Jurassic. In assistance with other geological evidences, such as the presence of early Triassic to late Triassic/early Jurassic S-type magmatism, terrestrial molasse depositions, regional unconformities, and strong deformation, we propose that the Western Kunlun Orogen may have undergone a long post-collisional intracontinental process from early Triassic to late Triassic/early Jurassic.  相似文献   

3.
以往将位于湘南、桂东北的都庞岭花岗岩基分为西体、中体和东体三部分。野外观察和岩相学研究表明,都庞岭中体和东体主要由黑云母正长花岗岩、黑云母二长花岗岩和二云母二长花岗岩组成,岩石具斑状结构,部分钾长石斑晶呈椭球状至球状,具斜长石环边,构成环斑结构。采用锆石SHRIMP U-Pb法获得都庞岭中体和东体中环斑花岗岩的侵位年龄分别为226.6±6.9 Ma和209.7±3.1 Ma,均属于晚三叠世,相当于印支晚期。都庞岭环斑花岗岩富硅、碱,贫钛、磷、镁和钙,其Rb、Cs、Th、U、REE、Pb、Y含量和Rb/Sr、Rb/Ba比值较高,而Sr、Ba含量和Zr/Hf比值(8.16~25.01)较低,具强烈的Eu负异常(δEu=0.02~0.13),10000×Ga/Al比值(2.64~4.38,平均3.15)高,显示A型花岗岩的地球化学特征。与华南印支早期S型花岗岩相比,都庞岭环斑花岗岩的εNd(t)值(-8.0~-8.3)明显偏高(前者低于-10),而tDM2值(1624~1645 Ma)则明显偏低(前者1800 Ma),表明它们可能直接源于地壳物质的部分熔融,但成岩过程中有地幔物质的参与。都庞岭环斑花岗岩的发现及其时代的确定,揭示了晚三叠世华南东部处于大陆裂解或造山后伸展的构造环境。结合华南东部沉积/岩石大地构造分析,认为华南早中生代构造体制的转换发生在中、晚三叠世,而非前人所认为的发生在中、晚侏罗世;同时,环斑花岗岩的出现,指示了华南中生代大规模成矿作用的来临,晚三叠世是华南中生代大规模成矿的第一个高峰期。  相似文献   

4.
Granitoids are important components of major orogenic belts, and provide important information about the regional geodynamic evolution. The emplacement mechanism of granite plutons and its relationship with regional tectonics has long been discussed, although it still remains debated. The Qinling Orogen within the Central China Orogen was marked by the emplacement of numerous Late Triassic granitic plutons. Although the petrology, geochemistry and geochronology of these intrusions have been addressed in various studies, their tectonic setting remains controversial, particularly since the structural aspects not been evaluated in detail. In this study, we attempt to reconstruct the emplacement process of the Late Triassic Dongjiangkou pluton in the South Qinling Belt. Field observations show extensive syn-plutonic deformations both in the pluton and its contact zones. Microstructural observations demonstrate that fabrics in the pluton were mainly acquired during submagmatic flow to high-T solid-state deformation. Zircon U–Pb ages reveal that the pluton is a composite intrusion which is composed of two juxtaposed small plutons with distinct ages (~210 Ma and ~200 Ma). Al-in-hornblende thermobarometer indicates that the pluton was formed at depths ranging from 4.7 km to 8.8 km, with an increasing depth trend from the inner unit to the outer unit. Distribution of the internal fabrics shows two concentric patterns which are concordant with pluton margins at the pluton scale and were probably induced by the regional sinistral transpression. Integrating these analyses, an incremental emplacement model is proposed for the syn-tectonic pluton. This model not only solves the ‘room problem’ but also accounts for the zoned petrological features of the pluton. Combined with previous studies, we suggest that the Late Triassic granite plutons in the Qinling Orogen were emplaced under a syn-collisional convergence setting, and that the granite magmatism was probably controlled by regional tectonics. Additionally, the incremental emplacement model may be a common mechanism for the Late Triassic granite plutons.  相似文献   

5.
胶东半岛中生代侵入岩浆活动序列及其构造制约   总被引:25,自引:0,他引:25  
胶东半岛是我国东部中生代花岗质岩石较为发育的地区。通过对该区中生代侵入岩体高精度年代学数据资料分析,建立了区内中生代花岗质岩石3个显著不同的演化序列:晚三叠世(225~205 Ma)幔源型花岗岩、晚侏罗世(160~150 Ma)地壳重熔型花岗岩和早白垩世(130~105 Ma)壳幔混合型花岗岩。通过与辽东和鲁西–徐淮地区中生代岩浆活动年代学格架的对比分析,探讨了华北东部地区中生代岩石圈构造演化和深部地球动力学过程。指出胶辽地区晚侏罗世(160~150 Ma)地壳重熔型花岗岩记录了华北东部一次重要的岩石圈地壳增厚事件,其区域动力学背景可能与古太平洋板块低角度向亚洲大陆俯冲作用密切相关。正是这次增厚作用导致了早白垩世时期岩石圈拆沉减薄和大规模伸展型花岗质岩浆活动。岩石圈地壳增厚和减薄作用过程主导了中国东部中生代陆内构造应力体制的转换和岩浆活动序列。  相似文献   

6.
河南省卢氏县八宝山岩体位于华北克拉通南缘东秦岭西段,岩体呈筒状,可能为古火山机构岩颈相的超浅成侵入体,成矿组合上为独特的以铁为主的多金属矿化。八宝山岩体边缘相为钾长花岗斑岩、中心相为黑云母二长花岗斑岩。二者的LA-ICP-MS锆石U-Pb年龄非常一致,分别为146.6±1.6Ma和145.9±1.9Ma,说明他们可能是同期岩浆侵入作用分异的产物。钾长花岗斑岩和黑云母二长花岗斑岩锆石Hf同位素组成特征也非常相似,εHf(t)值分别为-27.55~-20.71和-27.30~-21.90,tDM2值分别为1.80~2.93Ga和2.03~2.92Ga,表明该岩体的源区物质以壳源物质为主。综合分析表明,八宝山岩体可能是扬子俯冲陆壳部分熔融的作物,并可能混入少量的太华群和熊耳群的物质,其形成的地球动力学背景可能为俯冲碰撞后的伸展环境。  相似文献   

7.
对西秦岭疑似为燕山期花岗岩的舟曲峰迭和夏河桑日卡岩体进行岩相学研究和锆石U-Pb同位素地质年龄测定,获得锆石U-Pb年龄分别为201.3±0.9Ma和232.6±2.2Ma,表明2个岩体均属早中生代印支期造山作用岩浆活动的产物,澄清了有关地质图(1∶25万陇东幅地质图和1∶25万临夏市幅建造构造图)中2个岩体的时代归属。通过研究认为,西秦岭内部无论南带或北带基本不存在燕山期花岗岩,其花岗岩主体为出露于北带的印支期花岗岩体。因此,西秦岭可以与东秦岭的南秦岭构造单元对比,在构造带的划分上相当于南秦岭的西延。结合前人研究成果,从西秦岭与南秦岭花岗岩形成时代与同位素地球化学特征看,两者的岩浆源区相似并具有扬子地块基底属性。西秦岭缺少燕山期花岗岩的原因归咎于它的构造位置与东秦岭尤其是燕山期花岗岩极发育的小秦岭完全不同,后者燕山期岩浆作用得以盛行,可能与华北克拉通岩石圈破坏或与中生代中晚期华北地块向秦岭造山带的陆下俯冲有关。  相似文献   

8.
Many hydrothermal Cu–Mo–Au deposits related to granitoid intrusives were recently discovered in the West Qinling Orogenic Belt (WQOB). These deposits were mainly formed during the late Indosinian epoch (ca. 214 Ma), and the regional geological setting of Cu–Mo ore formation in WQOB during this epoch is poorly understood until now. This paper describes the geochronology and geochemistry of the Wenquan ore-bearing pluton, a composite granite body, to study the geologic background of magmatic emplacement and ore formation. The Mo mineralisation occurs at the contact between a fine-grained biotite monzogranite and a medium- to fine-grained porphyritic monzogranite. Zircon 206Pb/238U ages of 223 ± 3 Ma (biotite monzogranite) and 225 ± 3 Ma (porphyritic monzogranite) were obtained. Geochemical analyses show that the Wenquan pluton is a high-K calc-alkaline to shoshonite series rock with relatively high LREE and low HREE and a moderate to weak negative Eu anomaly. Relatively negative anomalies of Ba, Ti, P, Nb, Ta also exist. These results imply that the Wenquan pluton was emplaced during a transitional process (from collision to extension) between the Yangtze Craton and North China Craton. During the later Indosinian epoch, the East Qinling Orogenic Belt (EQOB) and WQOB had similar tectonic settings, and intensive magmatic activity and Mo mineralisation occurred. The EQOB was then involved in the Mesozoic subduction of the Pacific plate, and its subsequent tectonic evolution was different from that of the WQOB.  相似文献   

9.
王建民  周世强  王立佳 《吉林地质》2019,38(3):20-22,41
大兴安岭中生代花岗岩成因和构造背景的确定对讨论东北地区中生代构造-岩浆演化具有重要意义。笔者对大兴安岭中北段海拉尔盆地北缘的北秋叶山石英闪长岩岩体进行了锆石LA-ICP-MSU-Pb定年研究。结果显示:锆石具有清晰的生长振荡环带,其Th/U比值为0.64~1.16,属于典型的岩浆成因锆石;获得的206Pb/238U加权平均年龄为(227.6±1.2)Ma(n=25,MSWD=1.08),代表了北秋叶山岩体的结晶年龄,岩体的时代为晚三叠世,该岩体的形成可能与该区西侧的蒙古—鄂霍茨克洋演化相关。  相似文献   

10.
陕南秦岭造山带东江口花岗岩体群含磁铁矿极高,并含镁质黑云母,稀土元素负铕异常极不明显,氧同位素和锶初始比值都较低.因此,东江口岩体肛为一典型的Ⅰ型花岗岩.用数学地质和图解法与全球重要造山带花岗岩的地质地球化学特征类比后发现,本岩体群花岗岩为碰撞型花岗岩,是秦岭造山带碰撞造山的产物.据此分析了晚古生代秦岭造山带的演化.讨论了花岗岩成因类型与其构造环境的关系,认为碰撞型花岗岩既可是S型花岗岩,也可以是Ⅰ型花岗岩,这主要与花岗岩的源区岩石有关.而与构造环境没有必然的关系.  相似文献   

11.
Based on the new data of isotopic ages and geochemical analyses, three types of Mesozoic granites have been identified for the Xiong'ershan-Waifangshan region in western Henan Province: high-Ba-Sr I-type granite emplaced in the early stage (~160 Ma), I-type granite in the middle stage (~130 Ma) and anorogenic A-type granite in the late stage (~115 Ma).Geochemical characteristics of the high-Ba-Sr I-type granite suggest that it may have been generated from the thickened lower crust by partial melting with primary residues of amphibole and garnet. Gradual increase of negative Eu anomaly and Sr content variations reflect progressive shallowing of the source regions of these granites from the early to late stage. New 40Ar/39Ar plateau ages of the early-stage Wuzhangshan granite (156.0±1.1 Ma, amphibole) and middle-stage Heyu granite (131.8±0.7 Ma, biotite) are indistinguishable from their SHRIMP U-Pb ages previous published, indicating a rapid uplift and erosion in this region. The representative anorogenic A-type granite, Taishanmiao pluton, was emplaced at ~115 Ma. The evolution of the granites in this region reveals a tectonic regime change from post-collisional to anorogenic between ~160 Ma and ~115 Ma. The genesis of the early- and middle-stage I-type granites could be linked to delamination of subducted lithosphere of the Qinling orogenic belt, while the late-stage A-type granites represent the onset of extension and the end of orogenic process. In fact, along the Qinling -Dabie-Sulu belt, the Mesozoic granitoids in western Henan, Dabieshan and Jiaodong regions are comparable on the basis of these temporal evolutionary stages and their initial 87Sr/86Sr ratios,which may suggest a similar geodynamic process related to the collision between the North China and Yangtze cratons.  相似文献   

12.
In this paper, we present zircon U–Pb age and Hf isotope data to document the significance of magma mixing in the formation of Late Jurassic granitoid intrusions in the eastern Qinling Orogen, China. The Muhuguan granitoid pluton from this orogen consists of monzogranite and lesser biotite granite and granodiorite, all containing abundant hornblende-rich cumulates, dioritic xenoliths, and mafic magmatic enclaves (MMEs). The monzogranite and granodiorite are intruded by a number of lamprophyre dykes. Both a cumulate and a dioritic xenolith samples have concordant zircon U–Pb ages of ca. 161 ± 1 Ma, but possess contrasting Hf isotopic compositions. The cumulate has more radiogenic zircon Hf isotopes with negative ε Hf(t) values (?7.9 to ?2.5) and T DM1 ages of 0.9–1.1 Ga, indicating its derivation likely from basaltic rocks of the Neoproterozoic to early Paleozoic Kuanping Group in the area. The dioritic xenolith has much lower zircon ε Hf(t) values of ?19.5 to ?8.8 and T DM2 ages of 2.4–1.7 Ga, consistent with a juvenile Paleoproterozoic crust source presumably represented by the metabasic rocks of the Qinling Group in the area. Individual samples of the monzogranite, MME, and a lamprophyre dyke have U–Pb ages of 150 ± 1, 152 ± 1, and 152 ± 1 Ma, respectively, demonstrating coeval mafic and felsic magmatism in the Late Jurassic. The lamprophyre dyke has homogeneous, highly negative zircon ε Hf(t) values (?29.8 to ?24.8) and Archean T DM2 ages (3.0–2.7 Ga), and its genesis is interpreted as partial melting of an ancient enriched subcontinental mantle source. Zircons from the fine-grained MME show a large range of ε Hf(t) between ?29.1 and ?9.8, overlapping values of the monzogranite and lamprophyre dyke samples. Zircon U–Pb age and Hf isotopes of the MMEs are consistent with their formation by mixing of crustal- and enriched mantle-derived magmas. The main group of zircons from the monzogranite has ε Hf(t) values (?17.9 to ?9.3) and T DM2 ages (2.3–1.8 Ga) that are compatible with the dioritic xenoliths, indicating that the former was produced by partial melting of Paleoproterozoic crustal source with involvement of mantle-derived magmas. Mafic magmatism revealed from the Muhuguan pluton indicates that the eastern Qinling Orogen was dominated by lithospheric extension during the Late Jurassic. Compilation of existing geological and geochronological data suggests that this extensional event started in Late Jurassic (ca. 160 Ma) and persisted into the Early Cretaceous until ca. 110 Ma. The Jura-Cretaceous extension may have resulted from the late Mesozoic westward subduction of the Pacific plate beneath the East Asian continental margin.  相似文献   

13.
14.
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3±1.8 Ma and 229.9±1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene(47–52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features(A/CNK1.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive εHf(t) values ranging from +13.91 to +15.54(mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg~# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma(mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic(~230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous subterranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.  相似文献   

15.
The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.  相似文献   

16.
Zircon U–Pb ages and geochemical and isotopic data for Late Ordovician granites in the Baoshan Block reveal the early Palaeozoic tectonic evolution of the margin of East Gondwana. The granites are high-K, calc-alkaline, metaluminous to strongly peraluminous rocks with A/CNK values of 0.93–1.18, are enriched in SiO2, K2O, and Rb, and depleted in Nb, P, Ti, Eu, and heavy rare earth elements, which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed at ca. 445 Ma. High initial 87Sr/86Sr ratios of 0.719761–0.726754, negative ?Nd(t) values of –6.6 to –8.3, and two-stage model ages of 1.52–1.64 Ga suggest a crustal origin, with the magmas derived from the partial melting of ancient metagreywacke at high temperature. A synthesis of data for the early Palaeozoic igneous rocks in the Baoshan Block and adjacent Tengchong Block indicates two stages of flare-up of granitic and mafic magmatism caused by different tectonic settings along the East Gondwana margin. Late Cambrian to Early Ordovician granitic rocks (ca. 490 Ma) were produced when underplated mafic magmas induced crustal melting along the margin of East Gondwana related to the break-off of subducted Proto-Tethyan oceanic slab. In addition, the cession of the mafic magmatism between late Cambrian-Early Ordovician and Late Ordovician could have been caused by the collision of the Baoshan Block and outward micro-continent along the margin of East Gondwana and crust and lithosphere thickening. The Late Ordovician granites in the Baoshan Block were produced in an extensional setting resulting from the delamination of an already thickened crust and lithospheric mantle followed by the injection of synchronous mafic magma.  相似文献   

17.
北秦岭两河口岩体位于太白地区,侵位于秦岭群杂岩中,主要岩性为眼球状花岗岩、片麻状花岗岩和二长花岗岩。 本文研究的眼球状花岗岩和片麻状花岗岩的结晶年龄分别为928±19 Ma 和940±12 Ma,岩石中还保留古元古代至中元古代的 继承锆石。眼球状花岗岩含有富铝矿物石榴子石和白云母。岩石的A/CNK 多大于1.1,具有高Si、富铝的特征,属于高钾钙 碱性系列。岩石轻、重稀土分馏明显,具有中等负Eu 异常。岩石富集大离子亲石元素(Rb, Ba, K 等)、亏损高场强元素 (Nb, Ta, Ti 等),具有明显的Ba, P, Sr 负异常。矿物学和地球化学特征显示眼球状花岗岩和片麻状花岗岩为S 型花岗岩。两河 口岩体初始Sr 同位素组成变化大,87Sr/86Sr(t)=0.701067~0.739451,具有较低的εNd(t)=-5.7~-3.3, 两阶段Nd 模式年龄为TDM2= 1.9~2.1 Ga。样品具有高的放射成因Pb 同位素组成,指示两河口岩体是壳源成因岩石,其源岩可能为秦岭群斜长角闪岩和 片麻岩。结合区域地质背景,认为两河口岩体源于新元古代陆壳碰撞晚期的构造转换阶段古老中下地壳的熔融作用,是对 Rodinia 超大陆汇聚事件的响应。  相似文献   

18.
The Zhongchuan district is an important component of the metallogenic belt in the Western Qinling. The Zhongchuan granite pluton occurring in the centre of the Zhongchuan metallogenic area has been poorly constrained, though the Triassic granite in Western Qinling has been well documented. In‐situ zircon U–Pb ages, Hf isotopic compositions and whole‐rock geochemical data are presented for host granite and mafic microgranular enclaves (MMES) from the Zhongchuan pluton, in order to constrain its sources, petrogenesis and tectonic setting of the pluton. The distribution of major, trace and rare earth elements apparently reflect exchange between the MMES and the host granitic rocks mainly due to interactions between coeval felsic host magma and mafic magma. The zircon U–Pb age of host granite (231.6 ± 1.5 to 235.8 ± 2.3 Ma) has overlapping uncertainty with that of the MMES (236.6 ± 1.3 Ma), establishing that the mafic and felsic magmas were coeval. The Hf isotopic composition of the MMES (εHf(t) = −13.4 to 4.0) is distinct from the host granite (εHf(t) = −15.7 to 0.0), indicating that both enriched subcontinental lithosphere mantle (SCLM) and crustal sources contributed to their origin. The zircons have two‐stage Hf model ages of 1064 to 1798 Ma for the host granite and 858 to 1747 Ma for the MMES. This suggests that the granitic pluton was likely derived from partial melting of a Late Mesoproterozoic crust, with subsequent interaction with the SCLM‐derived mafic magmas in tectonic affinity to the South China Block. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The late Paleozoic to early Mesozoic granites exposed in northwestern Lao PDR provide important constraints on the tectonic evolution of the Eastern Paleotethyan Ocean and regional correlation with the giant granitic belt in Southeast Asia. New geochronological data show that the granites have Late Triassic zircon U–Pb ages of 231–220 Ma. They are dominated by monzogranite and biotite granite with an I-type geochemical affinity. These granites are enriched in LREEs and LILEs and depleted in HFSEs. The geochemical variations for these granites indicate the fractional crystallization of plagioclase, K-feldspar, biotite, apatite, and Fe–Ti oxides. Their initial 87Sr/86Sr ratios range from 0.7021 to 0.7105 and εNd (t) values from −1.6 to −7.3. Zircon in-situ εHf (t) values are in range of −6.0–+5.3 (peaks at −2.8 and +2.5, respectively), Hf model ages of 0.67–1.64 Ga (peaks at 0.83 Ga and 1.45 Ga, respectively), and δ18O values of 6.6‰–8.0‰, similar to the Late Triassic granitoids from the Eastern Province in Southeast Asia. These granites originated from a mixed source of ancient metamorphic rocks with juvenile mafic crust. The Late Triassic granites in northwestern Lao PDR formed in a post-collisional setting in response to the thickened crustal collapse during the assembly of the Sibumasu with Indochina blocks. These granites can southerly link with the Eastern granite province of the Eastern Paleotethyan Domain in Southeast Asia.  相似文献   

20.
柏治安 《地质与勘探》2020,56(2):372-386
本文对秦岭岩群中的三个斜长角闪岩(变质沉积岩)样品进行了岩石学、锆石U-Pb年代学和岩石地球化学研究,限定了秦岭岩群的形成时代,讨论了秦岭岩群的构造背景及归属问题。锆石定年结果显示了971 Ma、1222 Ma和840 Ma三个最大沉积年龄。秦岭岩群是一个杂岩体,秦岭岩群中至少存在中元古代(较老组成部分)和新元古代早期(较新组成部分)的岩性单元。秦岭岩群变质沉积岩的锆石年龄峰主要集中在中元古代-新元古代早期,具有与扬子块体和华北块体明显不同的锆石年代学特征,秦岭岩群在中元古代-新元古代早期为独立发展的微陆块。结合秦岭岩群的年代学特征及前人的研究结果,秦岭岩群中的变质沉积岩应沉积于弧相关的构造环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号