首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
I arrived at the Caltech Seismo Lab early in May 1972.The faculty and graduate students had the run of an old mansion(Donnelly Lab)that was slightly tattered ar...  相似文献   

2.
Donald V.Helmberger was an unparalleled observa-tional seismologist,and theoretician.His pioneering work in seismic waveform modeling,and the numerical methods ...  相似文献   

3.
The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10\(^{-4}\)–10\(^4\) Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10\(^4\) Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at \(\sim\)1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth’s internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz–3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3–30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7–2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.  相似文献   

4.
At the end of December of 1978 I was sitting in the office of Caltech Professor Don Helmberger,he was peering out his window towards the San Gabriel Mountains,s...  相似文献   

5.
Under equilibrium conditions, climate can be viewed in simple terms as the average energy pathways that incoming solar radiation takes before exiting the system in order to maintain overall energy balance. Similarly, future climate change will ultimately be determined by how the Earth’s energy balance and average energy pathways change in response to external radiative forcings, such as anthropogenic greenhouse gases, and internal redistributions. Here, we give an overview of climate research in the context of Earth’s energy flows and make the case for improved observations of total energy as a more physically robust metric of climate change than the commonly used surface temperature record.  相似文献   

6.
Observing and Modeling Earth’s Energy Flows   总被引:1,自引:0,他引:1  
This article reviews, from the authors’ perspective, progress in observing and modeling energy flows in Earth’s climate system. Emphasis is placed on the state of understanding of Earth’s energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m?2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth’s energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth’s energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth’s energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.  相似文献   

7.
正The plasmasphere is a region of relatively dense(~10–10000 cm~(–3))plasma,surrounding the Earth and extending to distances of about five Earth radii(R_E).It is filled with large amount of cold(~1 e V)plasma originated from the Earth’s ionosphere and co-rotating with the Earth due to the large scale co-rotation electric field.The outermost  相似文献   

8.
Izvestiya, Physics of the Solid Earth - Abstract—The paper presents the review of the conceptually most important results of seismological studies of the Earth’s core and their...  相似文献   

9.
The behavior of the dipole magnetic moment of the geomagnetic field during the reversals is considered. By analogy with the reversals of the magnetic field of the Sun, the scenario is suggested in which during the reversal the mean dipole moment becomes zero, whereas the instantaneous value of the dipole magnetic moment remains nonzero and the corresponding vector rotates from the vicinity of one geographical pole to the other. A thorough discussion concerning the definition of the mean magnetic moment, which is used in this concept, is presented. Since the behavior of the geomagnetic field during the reversal is far from stationary, the ensemble average instead of the time average has to be considered.  相似文献   

10.
F-approximation of the Earth’s surface topography   总被引:2,自引:0,他引:2  
  相似文献   

11.
The anisotropy of the convection in the Earth’s core can act as a cause of its nonsolid rotation. In the case of differential rotation, the magneto-rotational instability (the Velikhov instability) can arise in the liquid core. It is shown that the development of the magneto-rotational instability of the hydromagnetic flows in the liquid core of the Earth can generate variations in the geomagnetic field observed on the Earth’s surface.  相似文献   

12.
The results of the long-term recording of thermal neutron flux near the Earth’s surface with the use of an unshielded scintillation thermal-neutron detector are presented. The data obtained indicate the presence of periodic variations in the thermal neutron flux with the lunar diurnal and the lunar monthly periods. A hypothesis about the existence in the Earth’s crust of radon-neutron tidal variations in the concentration of thermal neutrons, correlated with the Moon’s phases and which have the gravitational origin, is formulated and confirmed experimentally. A simple mathematical model is proposed, which satisfactorily describes the observed variations. The case of the anomalous behavior of thermal neutrons is presented, which correlates with the high local seismic activity.  相似文献   

13.
Izvestiya, Physics of the Solid Earth - Abstract—The intensification of geomagnetic variations due to a number of strong remote earthquakes is studied using a chain of ground-based...  相似文献   

14.
The heat of the Earth derives from internal and external sources. A heat balance shows that most of the heat provided by external sources is re-emitted by long-wavelength heat radiation and that the dominant internal sources are original heat and heat generated by decay of unstable radioactive isotopes. Understanding of the thermal regime of the Earth requires appreciation of properties and mechanisms for heat generation, storage, and transport. Both experimental and indirect methods are available for inferring the corresponding rock properties. Heat conduction is the dominant transport process in the Earth’s crust, except for settings where appreciable fluid flow provides a mechanism for heat advection. For most crustal and mantle rocks, heat radiation becomes significant only at temperatures above 1200°C.
Christoph ClauserEmail:
  相似文献   

15.
Water plays a crucial role in the melting of Earth’s mantle. Mantle magmatisms mostly occur at plate boundaries (including subduction zones and mid-ocean ridges) and in some intraplate regions with thermal anomaly. At oceanic subduction zones, water released by the subducted slab may induce melting of the overlying mantle wedge or even the slab itself, giving rise to arc magmatism, or may evolve into a supercritical fluid. The physicochemical conditions for the formation of slab melt and supercritical fluid are still under debate. At mid-ocean ridges and intraplate hot zones, water and CO2 cause melting of the upwelling mantle to occur at greater depths and in greater extents. Low degree melting of the mantle may occur at boundaries between Earth’s internal spheres, including the lithosphere-asthenosphere boundary (LAB), the upper mantletransition zone boundary, and the transition zone-lower mantle boundary, usually attributed to contrasting water storage capacity across the boundary. The origin for the stimulating effect of water on melting lies in that water as an incompatible component has a strong tendency to be enriched in the melt (i.e., with a mineral-melt partition coefficient much smaller than unity), thereby lowering the Gibbs free energy of the melt. The partitioning of water between melt and mantle minerals such as olivine, pyroxenes and garnet has been investigated extensively, but the effects of hydration on the density and transport properties of silicate melts require further assessments by experimental and computational approaches.  相似文献   

16.
Diurnal S\(_1\) tidal oscillations in the coupled atmosphere–ocean system induce small perturbations of Earth’s prograde annual nutation, but matching geophysical model estimates of this Sun-synchronous rotation signal with the observed effect in geodetic Very Long Baseline Interferometry (VLBI) data has thus far been elusive. The present study assesses the problem from a geophysical model perspective, using four modern-day atmospheric assimilation systems and a consistently forced barotropic ocean model that dissipates its energy excess in the global abyssal ocean through a parameterized tidal conversion scheme. The use of contemporary meteorological data does, however, not guarantee accurate nutation estimates per se; two of the probed datasets produce atmosphere–ocean-driven S\(_1\) terms that deviate by more than 30 \(\upmu \)as (microarcseconds) from the VLBI-observed harmonic of \(-16.2+i113.4\) \(\upmu \)as. Partial deficiencies of these models in the diurnal band are also borne out by a validation of the air pressure tide against barometric in situ estimates as well as comparisons of simulated sea surface elevations with a global network of S\(_1\) tide gauge determinations. Credence is lent to the global S\(_1\) tide derived from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and the operational model of the European Centre for Medium-Range Weather Forecasts (ECMWF). When averaged over a temporal range of 2004 to 2013, their nutation contributions are estimated to be \(-8.0+i106.0\) \(\upmu \)as (MERRA) and \(-9.4+i121.8\) \(\upmu \)as (ECMWF operational), thus being virtually equivalent with the VLBI estimate. This remarkably close agreement will likely aid forthcoming nutation theories in their unambiguous a priori account of Earth’s prograde annual celestial motion.  相似文献   

17.
Science China Earth Sciences -  相似文献   

18.
Geomagnetism and Aeronomy - We studied the magnetic configuration and determined the spatial scales of the super thin current sheets observed by MMS in the Earth’s magnetotail during the...  相似文献   

19.
The Earth’s crossings of the magnetic sector boundaries are accompanied by changes in the magnetosphere, ionosphere, and troposphere. We considered the baric field’s response to the crossing of the inter-planetary magnetic field (IMF) sector boundaries during a geomagnetically quiet period. The IMF sign is shown to affect atmospheric pressure in high-latitude regions. The efficiency and sign of the relationship vary during the year. The baric field response to the Earth’s crossing of the IMF sector boundaries is most distinct during equinoxes. It is shown that, during a geomagnetically quiet period, the circulation processes in the atmosphere drive the changes in the atmospheric pressure when the Earth passes from one IMF sector into another.  相似文献   

20.
A review of studies devoted to the problem of exciting magnetic signals in the crust associated with the formation of the major rupture in an earthquake source and with the propagation of seismic waves was given in [Sgrigna et al., 2004]. However, this review contains incorrect citations from original papers and several erroneous statements concerning inertial and inductive mechanisms of conversion of the energy of rock motion into magnetic field energy. These mistakes are analyzed in the present paper. The formal and physical similarity between seismomagnetic waves in the crust and Alfvén waves in the magnetosphere is used in the analysis. A comparative analysis of the inertial and inductive mechanisms of seismomagnetic field generation is performed. The Cherenkov criterion of Alfvén wave generation due to the ionospheric effect of acoustic waves from earthquakes and explosions is derived. Attention is also given to nonlinear phenomena (nonlinearity of a mechanomagnetic conversion in the crust and anharmonicity and self-focusing of Alfvén waves in the magnetosphere).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号