首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural gas hydrates (NGHs) are globally recognized as an important type of strategic alternative energy due to their high combustion efficiency, cleanness, and large amounts of resources. The NGHs reservoirs in the South China Sea (SCS) mainly consist of clayey silts. NGHs reservoirs of this type boast the largest distribution range and the highest percentage of resources among NGHs reservoirs in the world. However, they are more difficult to exploit than sandy reservoirs. The China Geological Survey successfully carried out two NGHs production tests in the Shenhu Area in the northern SCS in 2017 and 2020, setting multiple world records, such as the longest gas production time, the highest total gas production, and the highest average daily gas production, as well as achieving a series of innovative theoretical results. As suggested by the in-depth research on the two production tests, key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization, hydrate phase transition, multiphase seepage and permeability enhancement, and the simulation and regulation of production capacity, among which the hydrate phase transition and seepage mechanism are crucial. Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature, is prone to produce secondary hydrates in the reservoirs, and is a complex process under the combined effects of the seepage, stress, temperature, and chemical fields. The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs, the hydrate phase transition, and exploitation methods and is characterized by strong methane adsorption, abrupt changes in absolute permeability, and the weak flow capacity of gas. To ensure the long-term, stable, and efficient NGHs exploitation in the SCS, it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation. With the constant progress in the NGHs industrialization, great efforts should be made to tackle the difficulties, such as determining the micro-change in temperature and pressure, the response mechanisms of material-energy exchange, the methods for efficient NGHs dissociation, and the boundary conditions for the formation of secondary hydrates in the large-scale, long-term gas production.©2022 China Geology Editorial Office.  相似文献   

2.
《China Geology》2020,3(2):197-209
Clayey silt reservoirs bearing natural gas hydrates (NGH) are considered to be the hydrate-bearing reservoirs that boast the highest reserves but tend to be the most difficult to exploit. They are proved to be exploitable by the first NGH production test conducted in the South China Sea in 2017. Based on the understanding of the first production test, the China Geological Survey determined the optimal target NGH reservoirs for production test and conducted a detailed assessment, numerical and experimental simulation, and onshore testing of the reservoirs. After that, it conducted the second offshore NGH production test in 1225 m deep Shenhu Area, South China Sea (also referred to as the second production test) from October 2019 to April 2020. During the second production test, a series of technical challenges of drilling horizontal wells in shallow soft strata in deep sea were met, including wellhead stability, directional drilling of a horizontal well, reservoir stimulation and sand control, and accurate depressurization. As a result, 30 days of continuous gas production was achieved, with a cumulative gas production of 86.14 ×104 m3. Thus, the average daily gas production is 2.87 ×104 m3, which is 5.57 times as much as that obtained in the first production test. Therefore, both the cumulative gas production and the daily gas production were highly improved compared to the first production test. As indicated by the monitoring results of the second production test, there was no anomaly in methane content in the seafloor, seawater, and atmosphere throughout the whole production test. This successful production test further indicates that safe and effective NGH exploitation is feasible in clayey silt NGH reservoirs. The industrialization of hydrates consists of five stages in general, namely theoretical research and simulation experiments, exploratory production test, experimental production test, productive production test, and commercial production. The second production test serves as an important step from the exploratory production test to experimental production test.  相似文献   

3.
Drilling results suggest that the thickness of natural gas hydrates (NGHs) in the Shenhu Area, South China Sea (SCS) are spatially heterogenous, making it difficult to accurately assess the NGHs resources in this area. In the case that free gas exists beneath hydrate deposits, the frequency of the hydrate deposits will be noticeably attenuated, with the attenuation degree mainly affected by pore development and free gas content. Therefore, the frequency can be used as an important attribute to identify hydrate reservoirs. Based on the time-frequency characteristics of deposits, this study predicted the spatial distribution of hydrates in this area using the frequency division inversion method as follows. Firstly, the support vector machine (SVM) method was employed to study the amplitude versus frequency (AVF) response based on seismic and well logging data. Afterward, the AVF response was introduced as independent information to establish the nonlinear relationship between logging data and seismic waveform. Then, the full frequency band information of the seismic data was fully utilized to obtain the results of frequency division inversion. The inversion results can effectively broaden the frequency band, reflect the NGHs distribution, and reveal the NGHs reservoirs of two types, namely the fluid migration pathway type and the in situ self-generation self-storage diffusion type. Moreover, the inversion results well coincide with the drilling results. Therefore, it is feasible to use the frequency division inversion to predict the spatial distribution of heterogeneous NGHs reservoirs, which facilitates the optimization of favorable drilling targets and is crucial to the resource potential assessment of NGHs.©2022 China Geology Editorial Office.  相似文献   

4.
Natural gas hydrates(NGHs) are a new type of clean energy with great development potential. However, it is urgent to achieve safe and economical NGHs development and utilization. This study established a physical model of the study area using the FLAC3D software based on the key parameters of the NGHs production test area in the South China Sea, including the depressurization method, and mechanical parameters of strata, NGHs occurrence characteristics, and the technological characteri...  相似文献   

5.
《China Geology》2018,1(1):5-16
Natural gas hydrates (NGH) is one of key future clean energy resources. Its industrialized development will help remit the huge demand of global natural gas, relieve the increasing pressure of the environment, and play a vital role in the green sustainable growth of human societies. Based on nearly two decades’ studying on the reservoir characteristics in the South China Sea (SCS) and the knowledge of reservoir system, the China Geological Survey (CGS) conducted the first production test on an optimal target selected in Shenhu area SCS in 2017. Guided by the “three-phase control” exploitation theory which focused on formation stabilization, technologies such as formation fluid extraction, well drilling and completing, reservoir stimulating, sand controlling, environmental monitoring, monitoring and preventing of secondary formation of hydrates were applied. The test lasted for 60 days from May 10th when starting to pump, drop pressure and ignite to well killing on July 9th, with gas production of 3.09×105 m3 in total, which is a world record with the longest continuous duration of gas production and maximal gas yield. This successful test brings a significant breakthrough on safety control of NGH production.  相似文献   

6.
The distributed acoustic sensor(DAS) uses a single optical cable as the sensing unit, which can capture the acoustic and vibration signals along the optical cable in real-time. So it is suitable for monitoring downhole production activities in the process of oil and gas development. The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbor...  相似文献   

7.
《China Geology》2018,1(2):202-209
Natural gas hydrate (NGH) is considered as one of the new clean energy sources of the 21st century with the highest potential. The environmental issues of NGH production have attracted the close attention of scientists in various countries. From May 10 to July 9, 2017, the first offshore NGH production test in the South China Sea (SCS) was conducted by the China Geological Survey. In addition, environmental security has also been effectively guaranteed via a comprehensive environmental monitoring system built during the NGH production test. The monitoring system considered sea-surface atmosphere methane and carbon dioxide concentrations, dissolved methane in the sea water column, and the seafloor physical oceanography and marine chemistry environment. The whole process was monitored via multiple means, in multiple layers, in all domains, and in real time. After the production test, an environmental investigation was promptly conducted to evaluate the environmental impact of the NGH production test. The monitoring results showed that the dissolved methane concentration in seawater and the near-seabed environment characteristics after the test were consistent with the background values, indicating that the NGH production test did not cause environmental problems such as methane leakage.  相似文献   

8.
泥质粉砂型天然气水合物被认为是储量最大开采难度亦最大的水合物储层,2017年南海天然气水合物试采,初步验证了此类水合物储层具备可开采性。在总结前次试采认识的基础上,对试采矿体进行优选、精细评价、数值与试验模拟和陆地试验,中国地质调查局于2019年10月—2020年4月在南海水深1225 m神狐海域进行了第二次天然气水合物试采。本次试采攻克了钻井井口稳定性、水平井定向钻进、储层增产改造与防砂、精准降压等一系列深水浅软地层水平井技术难题,实现连续产气30 d,总产气量86.14×104m3,日均产气2.87×104m3,是首次试采日产气量的5.57倍,大大提高了日产气量和产气总量。试采监测结果表明,整个试采过程海底、海水及大气甲烷含量无异常。本次成功试采进一步表明,泥质粉砂储层天然气水合物具备可安全高效开采的可行性。  相似文献   

9.
Large amounts of gas hydrate are distributed in the northern slope of the South China Sea, which is a potential threat of methane leakage. Aerobic methane oxidation by methanotrophs, significant methane biotransformation that occurs in sediment surface and water column, can effectively reduce atmospheric emission of hydrate-decomposed methane. To identify active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area in the South China Sea, multi-day enrichm...  相似文献   

10.
《China Geology》2022,5(3):383-392
To obtain the characteristics of the gas hydrate reservoirs at GMGS3-W19, extensive geophysical logging data and cores were analyzed to assess the reservoir properties. Sediment porosities were estimated from density, neutron, and nuclear magnetic resonance (NMR) logs. Both the resistivity and NMR logs were used to calculate gas hydrate saturations, the Simandoux model was employed to eliminate the effects of high clay content determined based on the ECS and core data. The density porosity was closely in agreement with the core-derived porosity, and the neutron porosity was higher while the NMR porosity was lower than the density porosity of sediments without hydrates. The resistivity log has higher vertical resolution than the NMR log and thus is more favorable for assessing gas hydrate saturation with strong heterogeneity. For the gas hydrate reservoirs at GMGS3-W19, the porosity, gas hydrate saturation and free gas saturation was 52.7%, 42.7% and 10%, on average, respectively. The various logs provide different methods for the comprehensive evaluation of hydrate reservoir, which supports the selection of candidate site for gas hydrate production testing.©2022 China Geology Editorial Office.  相似文献   

11.
Evaluating velocity-porosity relationships of hydrate-bearing marine sediments is essential for characterizing natural gas hydrates below seafloor as either a potential energy resource or geohazards risks. Four sites had cored using pressure and non-pressure methods during the gas hydrates drilling project (GMGS4) expedition at Shenhu Area, north slope of the South China Sea. Sediments were cored above, below, and through the gas-hydrate-bearing zone guided with logging-while-drilling analysis results. Gamma density and P-wave velocity were measured in each pressure core before subsampling. Methane hydrates volumes in total 62 samples were calculated from the moles of excess methane collected during depressurization experiments. The concentration of methane hydrates ranged from 0.3% to 32.3%. The concentrations of pore fluid (25.44% to 68.82%) and sediments (23.63% to 54.28%) were calculated from the gamma density. The regression models of P-wave velocity were derived and compared with a global empirical equation derived from shallow, unconsolidated sediments data. The results were close to the global trend when the fluid concentration is larger than the critical porosity. It is concluded that the dominant factor of P-wave velocity in hydrate-bearing marine sediments is the presence of the hydrate. Methane hydrates can reduce the fluid concentration by discharging the pore fluid and occupying the original pore space of sediments after its formation.©2022 China Geology Editorial Office.  相似文献   

12.
南海北部深水区油气勘探的关键地质问题   总被引:1,自引:0,他引:1  
朱伟林 《地质学报》2009,83(1):1059-1064
南海北部深水区已经获得了重大的天然气发现,正逐渐成为全球深水勘探的热点区之一。通过与相邻陆架区以及世界上典型深水盆地的类比发现,南海北部深水区具有独特的石油地质特征。南海北部大陆边缘经历了从燕山期主动陆缘向新生代边缘海被动陆缘的转变,其演化过程和成盆机制复杂;陆坡深水区具“热盆”特征,凹陷普遍发育超压,其生烃机制不明;深水区距离物源区较远,缺乏世界级大河系的注入,具远源沉积特征,未发现盐层及其相关构造,其油气成藏条件具有特殊性。此外,南海北部深水区海底地形崎岖、多火山,还面临着地震采集、处理等地球物理难题。因此,南海北部深水油气勘探需要在借鉴相邻陆架区和世界其他深水区成功经验的基础上,一方面深入研究其独特的油气地质特征,另一方面研发适应于我国深水环境的地球物理新技术,切实推动深水勘探的进程。  相似文献   

13.
Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea. However, there remains a lot of key questions yet to be resolved, particularly about the mechanisms and the controls of gas hydrates enrichment. Numerical simulaution would play signficant role in addressing these questions. This study focused on the gas hydrate exploration in the Shenhu Area, Northern South China Sea. Based on the newly obtained borehole and multichannel reflection seismic data, the authors conducted an integrated 3D basin modeling study on gas hydrate. The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation, such as temperature, pressure, hydrocarbon source, and tectonic setting. Gas hydrates are most concentrated in the Late Miocene strata, particularly in the structual highs between the Baiyun Sag and the Liwan Sag, and area to the south of it. It also proved the existence of overpressure in the main sag of source rocks, which was subject to compaction disequilibrium and hydrocarbon generation. It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage. The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential.©2022 China Geology Editorial Office.  相似文献   

14.
Various factors controlling the accumulation of natural gas hydrates (NGHs) form various enrichment and accumulation modes through organic combination. This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan (QDN) Basin (also referred to as the study area). Furthermore, it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area. The results are as follows. (1) The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area, which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults. (2) The top and flanks of gas chimneys below the bottom simulating reflectors (BSRs) show high-amplitude seismic reflections and pronounced transverse charging of free gas, indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts. (3) Chimneys, faults, and high-porosity and high-permeability strata, which connect the gas hydrate temperature-pressure stability zones (GHSZs) with thermogenic gas and biogenic gas, form the main hydrate migration system. (4) The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits (MTDs) and turbidites. In addition, the reservoir system has developed fissure- and pore-filling types of hydrates in the pathways. The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.©2022 China Geology Editorial Office.  相似文献   

15.
《China Geology》2020,3(2):210-220
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin, which is on the northern continental slope of the South China Sea. Gas hydrates in this area have been intensively investigated, achieving a wide coverage of the three-dimensional seismic survey, a large number of boreholes, and detailed data of the seismic survey, logging, and core analysis. In the beginning of 2020, China has successfully conducted the second offshore production test of gas hydrates in this area. In this paper, studies were made on the structure of the hydrate system for the production test, based on detailed logging data and core analysis of this area. As to the results of nuclear magnetic resonance (NMR) logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition, the hydrate system on which the production well located can be divided into three layers: (1) 207.8–253.4 mbsf, 45.6 m thick, gas hydrate layer, with gas hydrate saturation of 0–54.5% (31% av.); (2) 253.4–278 mbsf, 24.6 m thick, mixing layer consisting of gas hydrates, free gas, and water, with gas hydrate saturation of 0–22% (10% av.) and free gas saturation of 0–32% (13% av.); (3) 278–297 mbsf, 19 m thick, with free gas saturation of less than 7%. Moreover, the pore water freshening identified in the sediment cores, taken from the depth below the theoretically calculated base of methane hydrate stability zone, indicates the occurrence of gas hydrate. All these data reveal that gas hydrates, free gas, and water coexist in the mixing layer from different aspects.  相似文献   

16.
How natural gas hydrates nucleate and grow is a crucial scientific question. The research on it will help solve practical problems encountered in hydrate accumulation, development, and utilization of hydrate related technology. Due to its limitations on both spatial and temporal dimensions, experiment cannot fully explain this issue on a micro-scale. With the development of computer technology, molecular simulation has been widely used in the study of hydrate formation because it can observe the...  相似文献   

17.
《China Geology》2019,2(3):276-286
In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production.  相似文献   

18.
世界生物礁油气资源非常丰富,随着生物礁油气勘探开发的不断深入,生物礁油气探明储量和产量不断增加,所占比重越来越大。南海是我国最大的边缘海,其特殊的构造背景、多种类型礁的发育和良好的生储盖组合等都决定了南海生物礁油气勘探的广阔前景。建议加快南海勘探开发的步伐,充分利用南海丰富的油气资源。  相似文献   

19.
研究目的】中国地质调查局先后于2017年、2020年在南海北部神狐海域成功实施两轮水合物试采,创造了产气时间最长、产气总量最大、日均产气量最高等多项世界纪录,了解和掌握南海天然气水合物开采储层相变与渗流机理,有助于进一步揭示该类型水合物分解机理、产出规律、增产机制等,可为中国海域水合物资源规模高效开采提供理论基础。【研究方法】基于两轮试采实践,笔者通过深入研究发现,储层结构表征、水合物相变、多相渗流与增渗、产能模拟与调控是制约水合物分解产气效率的重要因素。【研究结果】研究表明,南海水合物相变具有分解温度低,易在储层内形成二次水合物等特点,是由渗流场-应力场-温度场-化学场共同作用的复杂系统;多相渗流作用主要受控于未固结储层的物性特征、水合物相变、开采方式等多元因素影响,具有较强的甲烷吸附性、绝对渗透率易突变、气相流动能力弱等特点;围绕南海水合物长期、稳定、高效开采目标,需要在初始储层改造基础上,通过实施储层二次改造,进一步优化提高储层渗流能力,实现增渗扩产目的。【结论】随着天然气水合物产业化进程不断向前推进,还需要着力解决大规模长时间产气过程中温度压力微观变化及物质能源交换响应机制以及水合物高效分解、二次生成边界条件等难题。创新点:南海水合物相变是由渗流场-应力场-温度场-化学场共同作用的复杂系统;南海泥质粉砂储层具有较强的甲烷吸附性、绝对渗透率易突变、气相流动能力弱等特点,多相渗流机理复杂。  相似文献   

20.
南海天然气水合物稳定带的影响因素   总被引:9,自引:0,他引:9  
文章利用南海所积累的大量热流、海底温度和地温梯度数据,针对地温梯度的变化,对地温梯度数据进行了初步校正。分情况研究了纯甲烷,甲烷、乙烷、丙烷混合物分别在纯水、海水条件下形成的天然气水合物在南海的可能分布范围;进而对影响天然气水合物分布的影响因素进行了讨论。研究表明,随着天然气中重烃含量的增加,孔隙水盐度的降低,水合物稳定带在平面上的分布范围越来越大,水合物稳定带的厚度也越来越大。比较而言,气体组成的影响要比孔隙水盐度的大。同时,天然气水合物稳定带的厚度与热流有一定的负相关关系。在南海2000m水深范围之内,由于受海底温度的控制,水合物稳定带的厚度与水深呈明显的正相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号