共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon’s track and intensity, although the results are not perfect. 相似文献
2.
This study explores the potential for directly assimilating polarimetric radar data (including reflectivity Z and differential reflectivity ZDR) using an ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting
(WRF) model to improve analysis and forecast of Tropical Storm Ewiniar (2018). Ewiniar weakened but brought about heavy rainfall over Guangdong, China after its final landfall. Two experiments are performed, one assimilating only Z
and the other assimilating both Z and ZDR. Assimilation of ZDR together with Z effectively modifies hydrometeor fields, and improves the intensity, shape and position of rainbands. Forecast of 24-hour extraordinary rainfall ≥250 mm is
significantly improved. Improvement can also be seen in the wind fields because of cross-variable covariance. The current study shows the possibility of applying polarimetric radar data to improve forecasting of tropical cyclones, which
deserves more researches in the future. 相似文献
3.
集合卡尔曼滤波同化探空资料的数值试验 总被引:3,自引:1,他引:3
应用集合卡尔曼滤波(Ensemble Kalman Filter;EnKF)方法,同化了2005年7月一次暴雨过程的探空观测资料,并用非静力中尺度模式MM5进行数值模拟试验。结果表明:在理想模式的假设下,即假设真实模拟和所产生的集合用的是同一个模式并有相同的初始误差,EnKF方法同化的分析结果较好。如果不运用EnKF方法同化探空观测资料,则集合预报结果和不加扰动的单个数值预报结果都没有EnKF方法同化过的好。 相似文献
4.
In the Ensemble Kalman Filter (EnKF) data assimilation-prediction system, most of the computationtime is spent on the prediction runs of ensemble members. A limited or small ensemble size does reduce thecomputational cost, but an excessively small ensemble size usually leads to filter divergence, especially whenthere are model errors. In order to improve the efficiency of the EnKF data assimilation-prediction systemand prevent it against filter divergence, a time-expanded sampling approach for EnKF based on the WRF(Weather Research and Forecasting) model is used to assimilate simulated sounding data. The approachsamples a series of perturbed state vectors from Nb member prediction runs not only at the analysis time(as the conventional approach does) but also at equally separated time levels (time interval is △t) beforeand after the analysis time with M times. All the above sampled state vectors are used to construct theensemble and compute the background covariance for the analysis, so the ensemble size is increased fromNb to Nb+2M£Nb=(1+2M)×Nb) without increasing the number of prediction runs (it is still Nb). Thisreduces the computational cost. A series of experiments are conducted to investigate the impact of △t (thetime interval of time-expanded sampling) and M (the maximum sampling times) on the analysis. The resultsshow that if △t and M are properly selected, the time-expanded sampling approach achieves the similareffect to that from the conventional approach with an ensemble size of (1+2M)×Nb, but the number ofprediction runs is greatly reduced. 相似文献
5.
利用ATOVS资料和常规观测资料, 采用GRAPES 3D-Var同化系统和中尺度数值模式MM5设计了仅同化常规观测资料的NOATOVS试验和同化常规观测资料及ATOVS辐射率资料的ATOVS试验, 对2004年6月22—24日长江中下游和西南地区东部的特大暴雨进行了分析和模拟。结果表明:直接同化ATOVS辐射率资料获得的分析场可以有效改进对流层温、湿场分布, 对风场也有一定的影响。对比试验结果表明:ATOVS试验可以较好地模拟出暴雨天气形势、主要影响系统, 对降雨的落区、强度也有较好的反映, 模拟的局地暴雨强度与实际降雨量基本一致, 同化卫星资料的改善效果较为明显。即同化ATOVS资料对于改进中尺度局地暴雨过程模拟效果是可行的。 相似文献
6.
This study examines the performance of coupling the deterministic four-dimensional
variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a
superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR)
benefits from using the state-dependent uncertainty provided by EnKF while taking advantage
of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum
likelihood solutions through minimization of a cost function about which the ensemble
perturbations are transformed, and the resulting ensemble analysis can be propagated forward
both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility
and effectiveness of this coupled approach are demonstrated in an idealized model with
simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR
and the EnKF under both perfect- and imperfect-model scenarios. The performance of the
coupled scheme is also less sensitive to either the ensemble size or the assimilation window
length than those for standard EnKF or 4DVAR implementations. 相似文献
7.
基于集合卡尔曼滤波的土壤水分同化试验 总被引:20,自引:2,他引:20
集合卡尔曼滤波是由大气数据同化发展的新的顺序同化算法,它利用蒙特卡罗方法计算背景场的误差协方差矩阵,克服了卡尔曼滤波需要线性化的模型算子和观测算子的难点。我们发展了一个基于集合卡尔曼滤波和简单生物圈模型(SiB2,Simple Biosphere Model)的单点陆面数据同化方案。利用1998年7月6日至8月9日青藏高原GAME-Tibet实验区MS3608站点的观测数据进行了同化试验。结果表明,利用集合卡尔曼滤波的数据同化方法可以明显地提高表层、根区、深层土壤水分的估算精度。 相似文献
8.
基于集合Kalman滤波数据同化的热带气旋路径集合预报研究 总被引:1,自引:2,他引:1
构建了一个基于集合Kalman滤波数据同化的热带气旋集合预报系统,通过积云参数化方案和边界层参数化方案的9个不同组合,采用MM5模式进行了不同时间的短时预报。对预报结果使用“镜像法”得到18个初始成员,为同化提供初始背景集合。将人造台风作为观测场,同化后的结果作为集合预报的初值,通过不同参数组合的MM5模式进行集合预报。对2003~2004年16个台风个例的分析表明,初始成员产生方法能够对热带气旋的要素场、中心强度和位置进行合理扰动。同化结果使台风强度得到加强,结构更接近实际。基于同化的集合路径预报结果要优于未同化的集合预报。使用“镜像法”增加集合成员提高了预报准确度,路径预报误差在48小时和72小时分别低于200 km和250 km。 相似文献
9.
基于前后张驰逼近(Back and Forth Nudging,简称BFN)和集合卡尔曼滤波(EnKF)方法,构建了一种新的同化方法HBFNEnKF(Hybrid Back and Forth Nudging EnKF)混合同化方法,并将此同化系统分别与通道浅水模式(shallow water model)和全球浅水模式对接,检验了HBFNEnKF同化方法的有效性。同时,对比了集合均方根滤波(EnSRF)、HNEnKF (Hybrid Nudging EnKF)、HBFNEnKF三种方法在有误差模式中的同化效果。试验结果表明:HBFNEnKF同化方法保留了HNEnKF方法的同化连续性,解决了EnKF同化不连续不平滑的问题,同时还有着更快的收敛速度;当采用单变量分析试验时,HBFNEnKF方法的优势最为明显,表明HBFNEnKF能够较好地保持不同模式变量间的平衡。此外,增量场尺度分析结果表明:相比EnSRF,HBFNEnKF在大尺度范围有更好的同化效果,同时能够避免在中小尺度范围内出现大量的虚假增量。 相似文献
10.
Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated. 相似文献
11.
数值天气预报中卫星资料同化应用现状和发展 总被引:14,自引:1,他引:14
卫星资料已大量应用于数值天气预报,占据了所用观测资料的主体并对数值天气预报效果的改善具有明显的作用。目前卫星资料的同化应用一方面在努力解决受地表辐射、云和降水影响的卫星观测资料的同化问题,以充分利用现有卫星资料并发挥其效能,同时发展适应伴随全球观测系统建立而带来大数量和多种类新类型卫星资料的同化应用。文章介绍了为满足卫星资料在数值天气预报中同化应用现状与发展而建立的两个卫星资料同化研究中心(JCSDA:Joint Center of Satellite Data Assimilation和NWP SAF:Satellite Applications Facility for Numerical Weather Prediction)的基本情况,并简要讨论我国数值天气预报中卫星资料同化应用。 相似文献
12.
13.
本研究利用WRF模式及其三维变分同化系统实现了对NOAA-16 AMSU-A微波资料的直接同化,针对2010年6月19日江西地区的一次强降水过程开展模拟与同化试验,并利用中国区域土壤湿度同化系统(CLSMDAS—China Land Soil Moisture Data Assimilation System)输出的土壤湿度值替换NCEP(National Centers for Environmental Prediction)资料中的土壤湿度,研究土壤湿度初值对辐射率资料直接同化中观测场与背景场偏差调整的影响。结果表明:采用CLSMDAS输出土壤湿度初值条件下模拟的亮温值与实际观测值更为接近,经过质量控制和偏差订正后更多的观测资料能够进入到同化系统中,说明改进的土壤湿度初值条件下观测算子的计算值得到正的调整,对低层地表通道的改进效果明显,尤其以50.3 GHz的窗区通道3的结果最为理想;针对此次强降水过程中24 h累积降水分布的模拟结果,CLSMDAS输出土壤湿度初值条件下同化AMSU-A资料,能够较为准确的把握整个雨带的走向、大雨以上级别降水的落区范围、降水中心落区及强度等。说明准确的土壤湿度初值能够改进卫星辐射率资料的同化结果,进而提高数值模式的模拟预报能力。 相似文献
14.
集合卡尔曼滤波数据同化在一维波动方程中的应用 总被引:3,自引:0,他引:3
简要回顾了集合卡尔曼滤波(EnKF:Ensemble Kalman Filter)数据同化方法的发展历史,并介绍了EnKF数据同化方法的基本原理,利用一维非线性波动方程进行了数值试验。EnKF数据同化方法的实现过程简单可行。避免了EKF中协方差演变方程预报过程中出现的计算不准确和关于协方差矩阵的大量数据的存储问题,最主要的是EnKF可以有效控制模式变量估计误差方差的增长,改善预报效果。 相似文献
15.
集合卡尔曼滤波同化多普勒雷达资料的数值试验 总被引:25,自引:10,他引:25
利用集合卡尔曼滤波(EnKF)在云数值模式中同化模拟多普勒雷达资料,并考察了不同条件下EnKF同化方法的性能.结果显示,经过几个同化周期后,EnKF分析结果非常接近真值.单多普勒雷达资料EnKF同化对雷达位置不太敏感,双雷达资料同化结果在同化的初期阶段比单雷达资料同化结果准确.同化由反射率导出的雨水比直接同化反射率资料更有效,联合同化径向速度和雨水有利于提高同化分析效果.协方差对EnKF同化效果起着非常重要的作用,考虑模式全部预报变量与径向速度协方差的同化效果比仅考虑速度场与径向速度协方差的同化效果好.雷达资料缺值降低了同化效果,此时增加地面常规观测资料的同化可以明显提高同化分析效果.EnKF同化技术对雷达观测资料误差不太敏感.初始集合对同化分析有较大影响.EnKF同化受集合大小和观测资料影响半径.同化对模式误差较敏感.利用EnKF同化双多普勒雷达资料,分析了一次梅雨锋暴雨过程的中尺度结构.结果表明,EnKF同化技术能够从双多普勒雷达资料反演暴雨中尺度系统的动力场、热力场和微物理场,反演的风场是较准确的,反演的热力场和微物理场分布也是基本合理的.中低层切变线是此次暴雨的主要动力特征,对流云表现为低层辐合、高层辐散并有垂直上升运动伴随,其热力特征表现为低层是低压区,高层为高压区,中部为暖区而上、下部为冷区,水汽、云水和雨水分别集中在对流云体内、上升气流区和强回波区. 相似文献
16.
AMSR2辐射率资料同化对台风“山神”分析和预报的影响研究 总被引:1,自引:2,他引:1
在WRFDA-3DVar(Weather Research and Forecasting model's 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资料在中小尺度同化系统中的有效使用。台风"山神"(Son-Tinh)直接同化AMSR2资料的个例试验结果表明,AMSR2资料可以很好的探测出台风的形态,并且与没有同化该资料的控制试验相比,同化AMSR2辐射率资料可以有效提高模式分析场的质量,进一步提高了台风中心气压,最大风速和台风路径的预报。 相似文献
17.
利用美国环境预报中心(NCEP)的GSI(Gridpoint Statstical Interpolation)业务同化系统,采用三维变分同化方法(3DVAR)和三维变分混合同化方法(3DVAR-Ensemble),针对2013年5月8日发生在我国华南地区的一次强降水天气过程进行了数值模拟试验研究,设计了不同组试验方案,将常规观测资料和AMSU-A\MHS\ATMS辐射率亮温资料直接同化进入区域大气模式WRF中,对比分析不同同化试验方案对模式初始场及降水预报效果的影响。数值试验结果表明:从初始时刻的同化增量来看,各试验组均改变了初始场结构,但增量的大小和分布却不同。加入ATMS微波资料的分析增量要小于同化AMSU-A+MHS的;Hybrid同化方法使用具有"流依赖"的背景误差协方差在一定程度上减小了模拟区域周围的虚假增量,使初始场的分布更真实和合理。从降水模拟的强度和空间分布评估结果来看,使用Hybrid方法同化ATMS的资料可以比较准确预报出降水中心的位置。综合而言,采用Hybrid的方法同化ATMS的资料最优。 相似文献
18.
Assimilation of Hourly Surface Observations with the Canadian High-Resolution Ensemble Kalman Filter
An hourly-cycling ensemble Kalman filter (EnKF) working at 2.5?km horizontal grid spacing is implemented over southern Ontario (Canada) to assimilate Meteorological Terminal Aviation Routine Weather Reports (METARs) in addition to the observations assimilated operationally at the Canadian Meteorological Centre. This high-resolution EnKF (HREnKF) system employs ensemble land analyses and perturbed roughness length to prevent an ensemble spread that is too small near the surface. The HREnKF then performs continuously for a four-day period, from which twelve-hour ensemble forecasts are launched every six hours. The impact on analyses and short-term forecasts of assimilating METAR data is given special attention.It is shown that using ensemble land surface analyses increases near-surface ensemble spreads for temperature and specific humidity. Perturbing roughness length enlarges the spread for surface wind. Given sufficient ensemble spread, the four-day case study shows that the near-surface model state is brought closer to surface observations during the cycling process. The impact of assimilating surface data can also be seen at higher levels by using aircraft reports for verification. The ensemble forecast verification suggests that METAR data assimilation improves ensemble forecasts of air temperature and dewpoint near the surface up to a lead time of six hours or even longer. However, only minor improvement is found in surface wind forecasts. 相似文献
19.
根据微波湿度计MHS(Microwave Humidity Sounder)辐射率资料及GRAPES(Global/Regional Assimilation and Pr Ediction System)模式的特点,建立适用于MHS资料的偏差订正系统,该系统包括扫描和气团偏差订正,其中气团偏差订正考虑水汽资料的特性,采用三种不同预报因子组合的方案。偏差订正结果表明:MHS各个通道的扫描偏差表现出不同特征;偏差订正后观测残差基本服从均值为零的高斯分布,且观测残差的均值有所降低并随时间变化平稳;三种气团偏差订正方案都有明显的订正效果,其中方案三的订正效果最佳。 相似文献
20.
A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution(HR) deterministic background forecast with lower-resolution(LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation(GSI) 3D variational(3DVar)analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds. 相似文献