首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Geoscience》2018,350(3):100-109
We investigated mafic and felsic volcanic rocks from the Bamoun plateau, a magmatic province located north of Mount Cameroon, in the continental part of the Cameroon Volcanic Line (CVL). Basalts and dacites were probably emplaced more than 40 Ma ago, while basanites represent very young volcanic eruptions. Among the basalts, some of them have suffered crustal contamination during their uprise through the continental crust, and their primary trace element and isotopic compositions have been slightly modified. The formation of the dacites was also accompanied by some crustal contamination. Non-contaminated rocks show that the oldest magmas are transitional basalts formed by relatively high degrees of partial melting of a moderately enriched mantle source, probably containing pyroxenites. Recent basanites were produced by very low partial melting degrees of an enriched mantle source with HIMU composition, but different from the source of the nearby Mount Cameroon lavas. The mantle beneath the CVL is thus very heterogeneous, and the tendency towards more alkaline mafic-ultramafic compositions in the youngest volcanic manifestations along the CVL seems to be a general feature of all CVL.  相似文献   

2.
Geochemical and isotopic data from Mesozoic lavas from the Jianguo, Niutoushan, Wulahada, and Guancaishan volcanic fields on the northern margin of the North China Craton provide evidence for secular lithospheric evolution of the region. Jianguo lavas are alkaline basalts with LILE- and LREE-enrichment ((La/Yb)N=12.2-13.2) and MORB-like Sr-Nd-Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd=3.9-4.8; (206Pb/204Pb)i≈18). Niutoushan basalts are similar but show evidence of olivine fractionation. Wulahada lavas are high-Mg andesites (Mg#∼67) with EM1 Sr-Nd-Pb isotopic signatures. Geochemical data suggest that the basalts originated from MORB-type asthenosphere whereas the high-Mg andesites were derived an EM1 mantle source, i.e., a refractory lithospheric mantle modified by a previously subducted slab. The result, combined with the available data of the Mesozoic basalts from the southern portion of the NCC (Zhang et al., 2002), manifests a vast secular evolution of the lithospheric mantle beneath the eastern NCC from the Paleozoic refractory continental lithosphere to this Mesozoic modified lithosphere. Compared with the cratonic margin, the lithospheric mantle beneath the center of the craton was less extensively modified, implying the secular evolution was related to the subduction processes surrounding the NCC. Therefore, we suggest that the interaction of the slab-derived silicic melt with the old refractory lithospheric mantle converted the Paleozoic cratonic lithospheric mantle into the late Mesozoic fertile mantle, which was also different from the Cenozoic counterpart. A geodynamic model is proposed to illustrate such a secular lithosphere evolution.  相似文献   

3.
Tombel graben and Mounts Bambouto are two volcanic fields of the typical system of alternating graben and horst structure of the Cameroon Volcanic Line. Tombel graben is a young volcanic field, whereas Mounts Bambouto horst is an old stratovolcano with calderas. Volcanic products in both settings have a signature close to that of Ocean Island Basalt implying a major role of FOZO (focal zone) component and varied contribution of depleted mantle (DMM) and enriched mantle (EM) components. The Cameroon Volcanic Line is a hot line essentially resulting from passive rifting. Eocene to Recent intraplate basaltic volcanism in the study area was probably a result of mantle upwelling coupled with lithospheric extension. The olivine basaltic magma of horst volcanoes evolved in a large-scale, steady-state magmatic reservoir via crystal fractionation and limited contamination to highly differentiated alkaline lavas (trachyte and phonolite). Conversely, rapid ascent of lavas along multiple fault lines of graben structures produced less evolved lavas (hawaiite) within small reservoirs. This model, evaluated for the study area, involves mantle upwelling inside zones of weakness in the lithosphere after intra-continental extension. It can be applied to other parts of the Cameroon Volcanic Line as well, and is similar to that described in other intra-continental rift-related areas in Africa.  相似文献   

4.
Major and trace element as well as Sr–Nd isotopic compositions of mid-Cretaceous lavas across western Shandong Province, China have been studied. These lavas can be generally divided into southern Shandong group (including Pingyi and Mengyin) and northern Shandong group (including Laiwu and Zouping) based on their geochemistry. The southern group lavas are characterized by extreme enrichment in LREE, large ion lithophile elements (LILE), and depletion in HFSE along with EMII-like Sr–Nd isotopic compositions, suggesting that the crustal involvements play a significant role in their petrogenesis. Comparing studies with Fangcheng basalts reveal that the Triassic continent–continent collision between the Yangtze craton (YC) and the North China craton (NCC), and subsequent extensive modification of the sub-continental lithospheric mantle (SCLM) beneath the south part of the NCC by silicic melts released from the subducted Yangtze lower crust, formed an enriched lithospheric mantle which was the source of the southern Shandong group lavas. In contrast, the northern Shandong group lavas are mildly enriched in LREE and LILE relative to those of the southern group lavas. The isotope compositions are also distinctive in that the Sr isotopic ratios are very low. Available geochemical evidence and comparing studies with spatially closed related mafic intrusions suggest that the SCLM feeding the northern group lavas seems to be linked to carbonatitic metasomatism and changed modal proportion of phlogopite and clinopyroxene in the mantle rather than subduction-related modifications. The contrasting geochemical characters of the mid-Cretaceous lavas across western Shangdong suggest that the SCLM of the NCC is spatially heterogeneous in Mesozoic.  相似文献   

5.
Data on the composition of rocks in linear tectono-magmatic rises in the Brazil Basin indicate that volcanic rocks in the Vitoria—Trindade seamount chain were derived from a mantle reservoir unevenly enriched in phosphorus under the effect of melts close to subalkaline picrobasalt. These melts contained much of the EM I mantle component because the plume material was contaminated with continental lithospheric component. A long-lived isotopic homogeneity of the source is typical of the whole structure, including the Trindade and Martin Vaz Islands and the Abrolhos Plateau. The analogous isotopic ratios of rocks at the Fernando de Noronha Islands are reportedly explained by a similar mechanism of melt derivation and the similar evolution of the mantle plume material, which was originally situated beneath the South American continent. Compared to the melts of volcanic rocks of all other seamounts discussed herein, the parental melts of volcanics at the Victoria—Trindade Seamounts were derived at lower degrees of melting of enriched source material at a greater depth. The overwhelming majority of volcanic rocks at the northern chain of the Bahia Seamounts were produced by melts generated with the involvement of material of the HIMU type. At the same time, one of our rock samples was derived from a source of composition close to DM with a certain admixture of enriched material like EM I. The mantle source of rocks of the Pernambuco Seamounts consisted of a mixture of DM and HIMU material with a certain admixture of EM I (or, perhaps, EM II). The 10°–11° S Seamounts were formed near the MAR axial zone at the decompressional melting of chemically homogeneous mantle source that consisted of DM material with an admixture of EM I (or, perhaps, EM II) component.  相似文献   

6.
The lava sequence of the central-western Deccan Traps (from Jalgaon towards Mumbai) is formed by basalts and basaltic andesites having a significant variation in TiO2 (from 1.2 to 3.3 wt%), Zr (from 84 to 253 ppm), Nb (from 5 to 16ppm) and Ba (from 63 to 407 ppm), at MgO ranging from 10 to 4.2 wt%. Most of these basalts follow a liquid line of descent dominated by low pressure fractionation of clinopyroxene, plagioclase and olivine, starting from the most mafic compositions, in a temperature range from 1220° to 1125°C. These rocks resemble those belonging to the lower-most formations of the Deccan Traps in the Western Ghats (Jawhar, Igatpuri and Thakurvadi) as well as those of the Poladpur formation. Samples analyzed for87Sr/86Sr give a range of initial ratios from 0.70558 to 0.70621. A group of flows of the Dhule area has low TiO2 (1.2–1.5 wt%) and Zr (84–105 ppm) at moderate MgO (5.2–6.2 wt%), matching the composition of low-Ti basalts of Gujarat, low-Ti dykes of the Tapti swarm and Toranmal basalts, just north of the study area. This allows chemical correlations between the lavas of central Deccan, the Tapti dykes and the north-western outcrops. The mildly enriched high field strength element contents of the samples with TiO2 > 1.5 wt% make them products of mantle sources broadly similar to those which generated the Ambenali basalts, but their high La/Nb and Ba/Nb, negative Nb anomalies in the mantle normalized diagrams, and relatively high87Sr/86Sr, make evident a crustal input with crustally derived materials at less differentiated stages than those represented in this sample set, or even within the sub-Indian lithospheric mantle.  相似文献   

7.
The off-rift central volcano of Öræfajökull has very distinctive EM1-like isotopic compositions compared with other Icelandic lavas. New Pb–Nd–Sr isotopic data from Öræfajökull show strong correlations interpreted as a result of mixing. End-members are a depleted mantle source incorporating 0.5 % subduction-processed sediment and a mantle source with an isotopic signature similar to lavas of the Reykjanes Peninsula. Sr–Nd–Pb isotopic correlations of Icelandic Eastern Rift Zone (ERZ) lavas are almost completely distinct from those of the Reykjanes Peninsula and the Western Rift Zone (WRZ) and require a high-207Pb/204Pb, low-143Nd/144Nd end-member that resembles Öræfajökull compositions, which is very distinct from the enriched end-members suggested for the Reykjanes Peninsula and the WRZ. Given the similar depth and degree of melting at rift zones, variation in the observed enriched end-members between rift zones must indicate spatial variations in enriched mantle sources within the shallow mantle under Iceland rather than purely mixing of melts from a bi-lithological mantle. This is consistent with observations that the ERZ lavas erupted closest to Öræfajökull exhibit the most Öræfajökull-like isotopic compositions, implying that a homogenised Öræfajökull source with positive ?207Pb is focused under the Öræfajökull centre and its associated flank zone. This then mixes laterally with the dominant negative-?207Pb ERZ mantle source. Like Reykjanes Peninsula and WRZ lavas, the ERZ mantle source has strongly negative Δ207Pb and low K/Nb (<170), and these provide evidence for a recycled oceanic crust contribution. The range in 206Pb/204Pb in mantle sources with negative Δ207Pb was probably generated by heterogeneity in 206Pb/204Pb and μ in the recycled oceanic crust, which is the dominant source of incompatible elements in Icelandic lavas.  相似文献   

8.
Scottish Dinantian transitional to mildly alkaline volcanism is represented by abundant outcrops in the Midland Valley, Southern Uplands and Highlands provinces. Dinantian volcanic rocks from Kintyre in the Scottish Highlands range in composition from basalt through basaltic hawaiite, hawaiite, mugearite and benmoreite to trachyte, the compositions of the evolved types being largely due to differentiation from the basaltic parents.Recent geochemical investigations of Scottish Caledonian granitoids, Siluro-Devonian Old Red Sandstone (ORS) lavas and xenolith suites from numerous vents and dykes of Permo-Carboniferous to Tertiary age have revealed that the Scottish crust and upper mantle both increase in age and are increasingly enriched in incompatible elements towards the north and northwest. The upper mantle and lower crust below the Highlands province are therefore largely considered to be more enriched and in parts older than those below the Midland Valley and Southern Uplands. Dinantian alkali basalts from these latter two provinces have Nd values predominantly in the range +3 to +6, initial 87Sr/86Sr values of 0.7029–0.7041 and 207Pb/ 204Pb values of 15.48–15.60. However, similar basalts from Kintyre and Arran in the Highlands have lower Nd (+0.1 to +3.4) and 207Pb/204Pb (for given 206Pb/204Pb ratios; 15.49–15.51) and slightly higher 87Sr/86Sr (0.7033–0.7046). This regional variation correlates well with the differences seen between Midland Valley and Highland magmas in the ORS calc-alkaline suite (Thirlwall 1986) and it is suggested that both the ORS and Dinantian basic rocks are derived from similar types of mantle, although no lithospheric slab component is present in the later Dinantian suites. Isotopically-distinct portions of mantle therefore appear to have been present below the Highland and Midland Valley-Southern Upland provinces from at least Caledonian to Carboniferous times. The combined incompatible element and Sr-Nd-Pd isotopic evidence from Kintyre and Arran basaltic rocks does not allow unequivocal distinction between a lithospheric mantle and a sublithospheric mantle source. The observed correlation between isotopic composition of Dinantian basalts and the chemical composition of the lithosphere, together with the apparent involvement of long-term separated source reservoirs suggests that Kintyre and Arran lavas were derived largely from a lithospheric mantle source. On the other hand, the isotopic enrichment of Kintyre basaltic rocks is not extreme; trace element and isotopic compositions are still comparable to modem OIB. Sublithospheric mantle could therefore also be a viable source for Kintyre and Arran Dinantian volcanism.  相似文献   

9.
Volcanism along the northwest boundary of the Arabian Plate found in the Gaziantep Basin, southeast Turkey, is of Miocene age and is of alkaline and calc-alkaline basic composition. The rare earth element data for both compositional series indicates spinel–peridotite source areas. The rare earth and trace elements of the alkaline lavas originate from a highly primitive and slightly contaminated asthenospheric mantle; those of the calc-alkaline lavas originate from a highly heterogeneous, asthenospheric, and lithospheric mantle source. Partial melting and magmatic differentiation processes played a role in the formation of the petrological features of these volcanics. These rocks form two groups on the basis of their ~(87) Sr/~(86) Sr and ~(143) Nd/~(144) Nd isotopic compositions in addition to their classifications based on their chemical compositions(alkaline and calc-alkaline). These isotopic differences indicate a dissimilar parental magma. Therefore, high Nd isotope samples imply a previously formed and highly primitive mantle whereas low Nd isotope samples may indicate comparable partial melting of an enriched heterogeneous shallow mantle. Other isotopic changes that do not conform to the chemical features of these lavas are partly related to the various tectonic events of the region, such as the Dead Sea Fault System and the Bitlis Suture Zone.  相似文献   

10.
Lavas from Santiago Island attest to a complex magmatic history, in which heterogeneous mantle source(s) and the interactions of advecting magmas with thick metasomatised oceanic lithosphere played an important role in the observed isotopic and trace element signatures. Young (<3.3 Ma) primitive lavas from Santiago Island are characterised by pronounced negative K anomalies and trace element systematics indicating that during partial melting DK>DCe. These features suggest equilibration with an oceanic lithospheric mantle containing K-rich hydrous mineral assemblages, consistent with the occurrence of amphibole + phlogopite in associated metasomatised lherzolite xenoliths, where orthopyroxene is partially replaced by newly formed olivine + (CO2 + spinel + carbonate inclusion-rich) clinopyroxene. Metasomatism induced a decrease in $ a ^{{{\text{melt}}}}_{{{\text{SiO}}_{{\text{2}}} }} $ and Ti/Eu ratios, as well as an increase in fO 2 , Ca/Sc and Sr/Sm in the Santiago magmas, suggesting a carbonatitic composition for the metasomatic agent. Santiago primitive lavas are highly enriched in incompatible elements and show a moderate range in isotopic compositions (87Sr/86Sr?=?0.70318–0.70391, 143Nd/144Nd?=?0.51261–0.51287, 176Hf/177Hf?=?0.28284–0.28297). Elemental and isotopic signatures suggest the involvement of HIMU and EM1-type mantle end-members, in agreement with the overall isotopic characteristics of the southern Cape Verde Islands. The overall geochemical characteristics of lavas from Santiago Island allow us to consider the EM1-like end-member as resulting from the involvement of subcontinental lithospheric mantle in the genesis of magmas on Santiago.  相似文献   

11.
Soltan Maidan Basaltic Complex with thickness up to about 1300 m is located in the eastern Alborz zone, north of Iran. This complex is dominantly composed of transitional to mildly alkaline basaltic lava flows, agglomerates and tuffs, together with a few thin sedimentary interlayers. Field geological evidence and study of palynomorph assemblages in the shale interlayer show Late Ordovician to Early Late Silurian ages. Chondrite- and primitive-mantle normalized multi-element patterns of Soltan Maidan basalts demonstrate enrichment in highly incompatible elements relative to less incompatible ones and their patterns are most similar to OIB. Trace elemental and Sr-Nd isotopic compositions indicate interaction and mixing of asthenospheric mantle source (OIB-type) with enriched subcontinental lithospheric mantle components (EM1-type). This asthenosphere-lithosphere interaction occurred in an extensional continental setting, which resulted in opening of the Paleotethys Ocean in the north of Gondwana during the Late Silurian to Middle Devonian.  相似文献   

12.
峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨   总被引:33,自引:3,他引:30  
张招崇  王福生 《地球科学》2003,28(4):431-439
选择峨眉山玄武岩区2个出露最全的云南永胜大迪里剖面和宾川上仓剖面进行了Sr、Nd、Pb同位素地球化学研究.结果表明, 少数样品的Pb同位素与Hanan和Graham定义的C组分相似, 而大多数样品则不在C组分范围之内, 说明除地幔柱物质外, 有岩石圈物质的加入.在多元同位素图解上, 峨眉山玄武岩位于EMⅠ、EMⅡ和DMM三端元之间, 表明其源区可以由地幔柱、富集的岩石圈地幔和地壳不同程度的混合来解释.结合已有的微量元素资料分析, 其中的地壳组分主要为下地壳, 而早期玄武质岩浆在上升过程中由于通道不畅通, 有较多的上地壳组分的混染.岩石圈地幔的富集作用可能与地幔柱释放出的小体积富Na、P而贫K的流体交代作用有关.粗面岩的同位素组成和玄武岩接近, 说明粗面岩是玄武质岩浆分离结晶作用形成的.   相似文献   

13.
The petrology and geochemistry of peridotite xenoliths in the Cenozoic basalts from Fanshi, the central North China Craton (NCC), provide constraints on the evolution of sub-continental lithospheric mantle. These peridotite xenoliths are mainly spinel-facies lherzolites with minor harzburgites. The lherzolites are characterized by low forsterite contents in olivines (Fo < 91) and light rare earth element (LREE) enrichments in clinopyroxenes. In contrast, the harzburgites are typified by high-Fo olivines (> 91), high-Cr# spinels and clinopyroxenes with low abundances of heavy REE (HREE). These features are similar to those from old refractory lithospheric mantle around the world, and thus interpreted to be relics of old lithospheric mantle. The old lithospheric mantle has been chemically modified by the influx of melts, as evidenced by the Sr–Nd isotopic compositions of clinopyroxenes and relatively lower Fo contents than typical Archean lithospheric mantle (Fo > 92.5). The Sr–Nd isotopic compositions of harzburgites are close to EM1-type mantle, and of the lherzolites are similar to bulk silicate earth. The latter could be the result of recent modification of old harzburgites by asthenospheric melt, which is strengthened by fertile compositions of minerals in the lherzolites. Therefore, the isotopic and chemical heterogeneities of the Fanshi peridotite xenoliths reflect the refertilization of ancient refractory lithospheric mantle by massive addition of asthenospheric melts. This may be an important mechanism for the lithospheric evolution beneath the Central NCC.  相似文献   

14.
《Gondwana Research》2015,28(4):1560-1573
We used Os isotopic systematics to assess the geochemical relationship between the lithospheric mantle beneath the Balkans (Mediterranean), ophiolitic peridotites and lavas derived from the lithospheric mantle. In our holistic approach we studied samples of Tertiary post-collisional ultrapotassic lavas sourced within the lithospheric mantle, placer Pt alloys from Vardar ophiolites, peridotites from nearby Othris ophiolites, as well as four mantle xenoliths representative for the composition of the local mantle lithosphere. Our ultimate aim was to monitor lithospheric mantle evolution under the Balkan part of the Alpine-Himalayan belt. The observations made on Os isotope and highly siderophile element (HSE) distributions were complemented with major and trace element data from whole rocks as well as minerals of representative samples. Our starting hypothesis was that the parts of the lithospheric mantle under the Balkans originated by accretion and transformation of oceanic lithosphere similar to ophiolites that crop out at the surface.Both ophiolitic peridotites and lithospheric mantle of the Balkan sector of Alpine-Himalayan belt indicate a presence of a highly depleted mantle component. In the ophiolites and the mantle xenoliths, this component is fingerprinted by the low clinopyroxene (Cpx) contents, low Al2O3 in major mantle minerals, together with a high Cr content in cogenetic Cr-spinel. Lithospheric mantle-derived ultrapotassic melts have high-Fo olivine and Cr-rich spinel that also indicate an ultra-depleted component in their mantle source. Further resemblance is seen in the Os isotopic variation observed in ophiolites and in the Serbian lithospheric mantle. In both mantle types we observed an unusual increase of Os abundances with increase in radiogenic Os that we interpreted as fluid-induced enrichment of a depleted Proterozoic/Archaean precursor. The enriched component had suprachondritic Os isotopic composition and its ultimate source is attributed to the subducting oceanic slab. On the other hand, a source–melt kinship is established between heterogeneously metasomatised lithospheric mantle and lamproitic lavas through a complex vein + wall rock melting relationship, in which the phlogopite-bearing pyroxenitic metasomes with high 187Re/188Os and extremely radiogenic 187Os/188Os > 0.3 are produced by recycling of a component ultimately derived from the continental crust.We tentatively propose a two-stage process connecting lithospheric mantle with ophiolites and lamproites in a geologically reasonable scenario: i) ancient depleted mantle “rafts” representing fragments of lithospheric mantle “recycled” within the convecting mantle during the early stages of the opening of the Tethys ocean and further refertilized, were enriched by a component with suprachondritic Os isotopic compositions in a supra-subduction oceanic environment, probably during subduction initiation that induced ophiolite emplacement in Jurassic times. Fluid-induced partial melts or fluids derived from oceanic crust enriched these peridotites in radiogenic Os; ii) the second stage represents recycling of the melange material that hosts above mantle blocks, but also a continental crust-derived terrigenous component accreted to the mantle wedge, that will later react with each other, producing heterogeneously distributed metasomes; final activation of these metasomes in Tertiary connects the veined lithospheric mantle and lamproites by vein + wall rock partial melting to generate lamproitic melts. Our data are permissive of the view that the part of the lithospheric mantle under the Balkans was formed in an oceanic environment.  相似文献   

15.
鲁西中、新生代镁铁质岩浆作用与地幔化学演化   总被引:13,自引:0,他引:13  
镁铁质火成岩作为分布最为广泛的典型幔源岩石, 已成为探索地幔化学性状及示踪岩石圈深部过程的主要研究对象.通过对典型样品元素-同位素组成的系统测定, 并结合前人已有资料, 综合研究了鲁西中生代和新生代镁铁质岩石的地质与地球化学特征.研究结果表明, 中生代镁铁质火成岩总体具有富轻稀土和大离子亲石元素、贫高场强元素、ISr值变化范围大(0.70396~0.71247)、εNd (t) 值显著偏低(-9.20~-21.21) 的地球化学特征, 但该区南部和北部的中生代镁铁质岩石在元素-同位素组成上仍存在一定差别, 主要表现在南部较之北部镁铁质岩石具有更高的稀土总量(ΣREE为325.52×10-6~555.75×10-6)和轻、重稀土比值(LREE/HREE=17.75~25.97), 以及更高的LILE/HFSE比值(如La/Nb=6.37~13.85, Th/Nb=0.52~1.53).南部镁铁质岩石较之北部镁铁质岩石也更富放射成因锶, ISr值分别为0.70844~0.71247和0.70396~0.70598.元素-同位素综合示踪指示鲁西中生代地幔总体具有因岩石圈大规模拆沉作用形成的EMⅠ型富集地幔特征, 但其南部叠加了因深俯冲而进入地幔的扬子陆壳的影响, 因而表现出EMⅠ和EMⅡ组分混合的富集地幔特征.新生代玄武岩具有类似于大洋玄武岩的地球化学特征, 其源区应为亏损的软流圈地幔, 但在部分熔融形成岩浆之前遭受了近期的交代作用.自中生代至新生代, 华北克拉通地幔具有由富集向亏损演变的趋势, 这一化学性状的演变最可能是中生代以来岩石圈大规模拆沉作用, 导致软流圈地幔上涌并对原有岩石圈地幔再改造所致.   相似文献   

16.
We present the first trace element and age data combined with new Sr, Nd, and Pb isotope ratios on lavas from San Felix Island in the Southeast Pacific. A 40Ar/39Ar plateau age of 421 ± 18 ka implies young intraplate volcanic activity in this region relative to the ∼22 Ma old volcanism on the neighbouring Easter seamount chain (ESC). The incompatible element compositions of the San Felix magmas are similar to those of EM1-type basalts from Gough, although the isotopic compositions differ. San Felix formed some 20 Ma after the ESC plume affected the plate in this region but no chemical signature of the ESC material is observed in the young volcanic rocks. The composition of the San Felix basalts indicates a mantle source containing old continental lithospheric material from either metasomatized mantle or recycled sediments, which ascends in a weak mantle plume.  相似文献   

17.
Tanya Furman  David Graham 《Lithos》1999,48(1-4):237-262
This study presents new major and trace element and Sr–Nd isotopic results for a suite of Miocene–Recent mafic lavas from the Kivu volcanic province in the western branch of the East African Rift. These lavas exhibit a very wide range in chemical and isotopic characteristics, due to a lithospheric mantle source region that is heterogeneous on a small scale, probably <1 km. The chemical and isotopic variations are mostly geographically controlled: lavas from Tshibinda volcano, which lies on a rift border fault on the northwestern margin of the province, have higher values of 87Sr/86Sr, (La/Sm)n, Ba/Nb, and Zr/Hf than the majority of Kivu (Bukavu) samples. The range of 87Sr/86Sr at Tshibinda (0.70511–0.70514) overlaps some compositions found in the neighboring Virunga province, while Bukavu group lavas include the lowest 87Sr/86Sr (0.70314) and highest Nd (+7.6) yet measured in western rift lavas. The Tshibinda compositions trend towards a convergence for Sr–Nd–Pb isotopic values among western rift lavas. Among Kivu lavas, variations in 143Nd/144Nd correlate with those for certain incompatible trace element ratios (e.g., Th/Nb, Zr/Hf, La/Nb, Ba/Rb), with Tshibinda samples defining one compositional extreme. There are covariations of isotopic and trace element ratios in mafic lavas of the East African Rift system that vary systematically with geographic location. The lavas represent a magmatic sampling of variations in the underlying continental lithospheric mantle, and it appears that a common lithospheric mantle (CLM) source is present beneath much of the East African Rift system. This source contains minor amphibole and phlogopite, probably due to widespread metasomatic events between 500 and 1000 Ma. Lava suites which do not show a strong component of the CLM source, and for which the chemical constraints also suggest the shallowest magma formation depths, are the Bukavu group lavas from Kivu and basanites from Huri Hills, Kenya. The inferred extent of lithospheric erosion therefore appears to be significant only beneath these two areas, which is generally consistent with lithospheric thickness variations estimated from gravity and seismic studies.  相似文献   

18.
Mafic granulite and pyroxenite xenoliths from Cenozoic alkaline basalts at Hannuoba, Hebei Province, North China have been selected for a systematic geochemical and Sr–Nd–Pb isotopic study, which provides a unique opportunity to explore nature of the lower crust and the interaction between the continental crust and lithospheric mantle beneath an Archean craton. The major, compatible and incompatible elements and radiogenic isotopes of these xenoliths suggest great chemical heterogeneity of the lower crust beneath the Hannuoba region. Petrological and geochemical evidences indicate a clear cumulate origin, and most likely, they are related to basaltic underplating in different geological episodes. However, the Sr–Nd–Pb isotopic compositions of the xenoliths reveal a profound enriched source signature (EM I) with some influence of EM II, which implies that some portion of pre-existing, old metasomatized subcontinental lithospheric mantle could have played an important role in their genesis. It is suggested that the interaction between continental crust and subcontinental mantle as manifested by basaltic underplating would be closely related to regional tectonic episodes and geodynamic processes in the deep part of subcontinental lithospheric mantle.  相似文献   

19.
The Rhön area as part of the Central European Volcanic Province (CEVP) hosts an unusual suite of Tertiary 24-Ma old hornblende-bearing alkaline basalts that provide insights into melting and fractionation processes within the lithospheric mantle. These chemically primitive to slightly evolved and isotopically (Sr, Nd, Pb) depleted basalts have slightly lower Hf isotopic compositions than respective other CEVP basalts and Os isotope compositions more radiogenic than commonly observed for continental intraplate alkaline basalts. These highly radiogenic initial 187Os/188Os ratios (0.268–0.892) together with their respective Sr–Nd–Pb isotopic compositions are unlikely to result from crustal contamination alone, although a lack of Os data for lower crustal rocks from the area and limited data for CEVP basalts or mantle xenoliths preclude a detailed evaluation. Similarly, melting of the same metasomatized subcontinental lithospheric mantle as inferred for other CEVP basalts alone is also unlikely, based on only moderately radiogenic Os isotope compositions obtained for upper mantle xenoliths from elsewhere in the province. Another explanation for the combined Nd, Sr and Os isotope data is that the lavas gained their highly radiogenic Os isotope composition through a mantle “hybridization”, metasomatism process. This model involves a mafic lithospheric component, such as an intrusion of a sublithospheric primary alkaline melt or a melt derived from subducted oceanic material, sometime in the past into the lithospheric mantle where it metasomatized the ambient mantle. Later at 24 Ma, thermal perturbations during rifting forced the isotopically evolved parts of the mantle together with the peridotitic ambient mantle to melt. This yielded a package of melts with highly correlated Re/Os ratios and radiogenic Os isotope compositions. Subsequent movement through the crust may have further altered the Os isotope composition although this effect is probably minor for the majority of the samples based on radiogenic Nd and unradiogenic Sr isotope composition of the lavas. If the radiogenic Os isotope composition can be explained by a mantle-hybridization and metasomatism model, the isotopic compositions of the hornblende basalts can be satisfied by ca. 5–25% addition of the mafic lithospheric component to an asthenospheric alkaline magma. Although a lack of isotope data for all required endmembers make this model somewhat speculative, the results show that the Re–Os isotope system in continental basalts is able to distinguish between crustal contamination and derivation of continental alkaline lavas from isotopically evolved peridotitic lithosphere that was contaminated by mafic material in the past and later remelted during rifting. The Hf isotopic compositions are slightly less radiogenic than in other alkaline basalts from the province and indicate the derivation of the lavas from low Lu–Hf parts of the lithospheric mantle. The new Os and Hf isotope data constrain a new light of the nature of such metasomatizing agents, at least for these particular rocks, which represent within the particular volcanic complex the first product of the volcanism.  相似文献   

20.
The mid‐Cretaceous Spences Bridge Group (SBG) comprises a series of basaltic to rhyolitic lavas and related volcaniclastic rocks (Pimainus Formation) overlain by a succession of mainly amygdaloidal andesites (Spius Formation) related to the closure of the Methow–Tyaughton basin and accretion of the Insular terrane in the North American Cordillera. Geochemical variation in the SBG is related primarily to metasomatic processes in the mantle wedge. Pimainus lavas include low‐ to high‐K, tholeiitic and calc‐alkaline types, and have isotopic compositions (εNd(100Ma) = + 5.2 to + 7.0, εSr(100Ma) = − 10 to − 20, 206Pb/204Pb = 18.82 to 18.91, 207Pb/204Pb = 15.55 to 15.60, 208Pb/204Pb = 38.24 to 38.43) between the ranges for primitive arcs and accreted terrane crust. Crustal sources are identified only for some low–medium K dacite and rhyolite compositions. The occurrence of intermediate compositions with high MgO contents (up to 6 wt%) and the presence of adakitic trace element features in medium–high K felsic lavas attests to metasomatism of the mantle wedge by slab melts during Pimainus volcanism. Spius lavas have comparable K2O and Pb isotopic compositions to the Pimainus, even higher MgO (up to 9.2 wt%), and display a mild intraplate character in having up to 0.6 wt% P2O5, 15 ppm Nb, and 240 ppm Zr. Spius Nd−Sr isotopic compositions (εNd(100Ma) = + 5.3 to + 6.9, εSr(100Ma) = − 14 to − 25) define an array extending from Pimainus to alkaline seamount compositions. The low εSr values, elevated high field strength element contents, and moderate silica contents suggest Spius volcanism was related to the introduction of small melt fractions from the asthenosphere into the mantle wedge which had previously generated Pimainus melts. The range of compositional types in the Pimainus Formation constrains tectonic scenarios to include an elevated slab thermal regime, likely from approach of an ocean ridge system toward the continental margin. Spius volcanism may have been generated by asthenospheric upwelling triggered by slab window development or slab‐hinge roll‐back on closure of the Methow–Tyaughton basin. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号