首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
怀来地区蒸渗仪测定玉米田蒸散发分析   总被引:3,自引:0,他引:3  
利用2012年和2013年怀来遥感综合试验站蒸渗仪、涡动相关仪和自动气象站观测资料,分析了土壤蒸发和玉米农田蒸散的日、季节变化,用多元回归分析法研究了气象因子(净辐射、空气温度、空气湿度、风速)、土壤水分和农田蒸散量的关系,并将蒸渗仪蒸散观测值与涡动相关仪蒸散量观测值进行了比较。结果表明,土壤蒸发和玉米农田蒸散日变化曲线较一致,季节性差异明显;怀来地区日蒸散量与净辐射和土壤水分相关性较好,与其他影响因子相关性不明显;蒸渗仪的农田代表性受其观测范围内的作物长势影响显著,涡动相关仪观测的蒸散量与蒸渗仪观测值相关关系较好,蒸渗仪观测值较涡动相关仪观测值高10.5%,这是由于不能同周围农田进行热交换,蒸渗仪内平均土壤温度较农田高了9.5%,导致蒸渗仪对蒸散量的相对高估。  相似文献   

2.
利用2014年6-10月夏玉米全生育期试验数据和气象数据,采用LG型称重式蒸渗仪分析了在充分供水条件下陕西关中地区夏玉米全生育期最大耗水量及不同生育期的作物系数.结果表明:夏玉米在试验地段从播种到收获共119 d,充分供水条件下夏玉米全生育期最大耗水量599.9 mm.玉米实际蒸发蒸腾量(ET)与参考蒸散量(ET0)的...  相似文献   

3.
大型称重式蒸渗仪测定的冬小麦农田的蒸散规律研究   总被引:5,自引:0,他引:5  
利用大型称重式蒸渗仪实测数据,对冬小麦蒸散耗水规律进行研究。结果表明:1)冬小麦的目蒸散量变化曲线呈单峰型,中午大,早晚小。蒸散量在分蘖期出现小峰值,此后逐渐降低,返青后又不断增大,在孕穗期土壤水分亏缺严重,作物蒸散量增加速率有所下降。2)Penman—Monteith法估算的实际蒸散量比蒸渗仪实测值略高,怛两者的相关...  相似文献   

4.
湖北省潜在蒸散估算模型对比   总被引:2,自引:0,他引:2  
利用湖北省74个气象站1961~2011年逐日气象资料,通过与FAO56-Penman-Monteith(FAO-PM)模型潜在蒸散估算结果对比,从月、季、年际变化及不同干湿状况条件比较了PriestleyTaylor、Hargreaves及Thornthwaite 3种简化的经验模型在湖北省的适用性。结果表明:3种简化模型与FAO-PM模型计算的逐月潜在蒸散均存在一定偏差,Thornthwaite模型偏差最大且冬夏季偏差反位相,Priestley-Taylor模型偏差最小,Hargreaves模型各月间的偏差最为稳定。3种简化模型与FAOPM模型估算结果具有良好的线性关系,且在各区域间相对稳定,但不同季节和干湿状况下各有差异,其中Hargreaves模型各季节间和不同干湿状况下与FAO-PM模型的关系均最为稳定。在年际变化上,Priestley-Taylor和Hargreaves模型与FAO-PM模型计算结果年际波动基本一致,Thornthwaite模型与FAO-PM模型计算结果尽管在量值上较为接近,但年际波动偏小;Priestley-Taylor和FAOPM模型年潜在蒸散趋势变化基本一致,Hargreaves模型年潜在蒸散趋势变化微弱,而Thornthwaite模型年潜在蒸散趋势变化与FAO-PM模型相反。建议在湖北省气象资料匮乏或不便应用的情况下,作物模拟模型及气候变化等研究中采用Priestley-Taylor估算模型,日常干旱监测及水资源规划中采用Hargreaves模型,干湿气候区划等工作中可采用Thornthwaite模型。同时,使用中应基于FAO-PM模型对经验模型进行适当订正,模型订正应建立在季节或月尺度。  相似文献   

5.
参考作物蒸散量的多种计算方法及其结果的比较   总被引:54,自引:3,他引:51       下载免费PDF全文
分别用 FAO Penman- Monteith公式 (模型 1 )、FAO Penman 修正式 (模型 2 )和国内Penman修正式 (模型 3)计算了泰安和西峰两地的参考作物蒸散量 ,对 3种方法的计算结果进行了比较 .模型 1得到的参考作物蒸散量大于后 2种模型 ,导致不同模型计算偏差的原因是 3种模型各自选用了不同的辐射项和动力项计算式 ,且计算偏差随季节和地理条件而变 .建议计算区域参考作物蒸散量用模型 1 ,计算单站逐日参考作物蒸散量 3种模型都可用 .  相似文献   

6.
华北地区玉米田实际蒸散量的计算   总被引:6,自引:2,他引:6       下载免费PDF全文
以简化农田实际蒸散的计算过程为目的,利用1999年河北定兴县中国气象科学研究院农业气象试验基地的玉米田0~300 cm土壤湿度和气象要素的实测资料以及华北地区5个站1991~1995年0~50 cm土壤湿度和气象资料,探讨由简化参考蒸散模式计算玉米田实际蒸散的可能性;对比了Priestley-Taylor模式和FAO(1998)Penman-Menteith模式的计算结果,以农田试验资料为基础,采用叶面积系数和平均土壤相对湿度为因子,建立了实际蒸散的计算模式。并以华北地区8个站1999~2000年0~50 cm土壤湿度和气象资料进行验证,平均误差一般为10%~15%.  相似文献   

7.
利用时域反射仪测定的土壤水分估算农田蒸散量   总被引:19,自引:0,他引:19       下载免费PDF全文
简要介绍了时域反射仪(TDR)测定土壤含水量的原理和方法,根据TDR实测的土壤水分和农田水量平衡原理,估算了冬小麦生育期内不同供水条件下的农田蒸散量,探讨了TDR探针不同埋设方式对测定土体贮水量以及对估算的农田蒸散量的影响,根据充分供水区测定的最大可能蒸散量、非充分供水区的实际蒸散量,以及用气象资料计算的参考作物蒸散量,分别计算了冬小麦生育期内的作物系物Kc和土壤水分胁迫系数Ks。  相似文献   

8.
基于涡度相关的春玉米逐日作物系数及蒸散模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
作物系数是计算作物蒸散量的关键参数。利用2006—2008年和2011年辽宁锦州玉米农田生态系统的涡度相关、气象、作物发育期及叶面积指数观测数据,分析不受水分胁迫条件下玉米逐日作物系数特征及其与叶面积指数的关系。研究表明:作物系数与玉米农田实际蒸散均呈单峰型变化,约在7月末至8月初达到最大值 (玉米开花吐丝期)。在此基础上,建立了不受水分胁迫条件下玉米逐日作物系数与叶面积指数关系 (达到0.01显著性水平), 同时,采用积温表示的标准化生育期方法模拟相对叶面积指数,并建立了逐日作物系数与相对叶面积指数关系 (达到0.01显著性水平),解决了无叶面积观测地区玉米逐日实际蒸散量的计算。研究结果可为玉米农田用水管理以及灌溉措施的制定提供参考。  相似文献   

9.
参考作物蒸散量是表征气候干湿程度、植被耗水量、生产潜力及水资源供需平衡的重要指标之一。以海口和敦煌两个气候相差较大的站点为例,利用Irmark-Allen、Hargreaves、Jensen-Haise 3种基于温度的ET 0计算方法,计算了 2013 2015 年两个站点的参考作物蒸散量,以FAO98 Penman-Monteith方法计算所得结果为标准,依据相关系数(R)及其显著性(P)、均方根误差(RMSE)和平均偏差(MBE)等量化指标,分别对3种方法计算结果在两个站点月和日序列的适用性进行评价,并对这3种方法进行本地化修正优化和检验。结果表明:本地化前,Irmark-Allen方法在海口的计算与Penman-Monteith的偏差最小且相关性好( R =0.97, P <0.01,RMSE=0.38 mm/d,MBE=-0.01 mm/d),其他两种方法均高估。3种基于温度的ET 0方法在敦煌都有很大的误差,其中Irmark-Allen方法在夏季偏低,在冬季偏高;Hargreaves方法整体偏高;Jensen-Haise方法在冬季不适用,出现无效负值,而在其他时段偏高。本地化后,3种基于温度的ET 0方法在两个地区都得到明显改善,其中Jensen-Haise方法在海口效果最好( R =0.96, P< 0.01,RMSE=0.61 mm/d,MBE=0.003 mm/d),在敦煌效果也是最好的( R =0.96, P <0.01,RMSE=0.69 mm/d, MBE=-0.02 mm/d)。  相似文献   

10.
利用宁夏扬黄新灌区地膜玉米试验地土壤水分观测资料,对地膜玉米的水量平衡进行了动态分析,并运用FAO-PM方程计算分析了该地区地膜玉米生育期间的蒸散量及地膜玉米的耗水规律,由此对该地区地膜玉米的灌溉制度进行了初步分析。结果表明,该地区地膜玉米生育期内的耗水量除受作物本身生物学特性的影响外,主要依赖于灌溉量的大小,要保证玉米的正常生长发育,全生育期一般需灌水5-6次,灌水量在3450-3900m3/hm2。  相似文献   

11.
贵州夏旱对水稻、玉米产量影响评估方法研究   总被引:3,自引:2,他引:1  
提出了作物夏旱度的计算公式和作物历史灾损量的估算方法,建立了夏旱对水稻、玉米产量影响评估模型.研究指出:(1)夏旱对贵州水稻、玉米的影响区域主要集中在中部以东地区;(2)伏旱的影响区域大于初夏旱;(3)干旱对水稻的影响区域大于玉米.  相似文献   

12.
利用区域气候模式RIEMS产品分析日蒸散量及其影响   总被引:1,自引:0,他引:1  
利用区域气候模式RIEMS输出的各种气象参数,采用了BEF等4种不同方法计算了沂沭河上游流域的潜在蒸散量,并与该流域6个气象站实测蒸发数据计算的陆面潜在蒸散量进行了比较。结果表明,根据平均偏差、平均绝对偏差、均方根差和相关系数指标的综合判断,该4种方法的估测精度从高到低依次为双线性曲面回归经验函数法(BEF)、Hargreaves-Samani(Harg)法、Pristley-Tayler(P-T)法和Penman-Monteith(P-M)法。在时间序列上,4种方法计算的逐日蒸散量与观测值呈相同的变化趋势,但计算值在蒸散发最强、最弱和降水最多、气温最高的7-9月有较大差异。BEF法估测的精度最高,与观测值最接近,Harg法、P-M法和P-T法都有明显的偏高现象。BEF法只需要较少的参数就能得到较高的估测精度,因此可作为利用区域气候模式RIEMS产品计算沂沭河流域蒸散量的首选方法,进而为RIEMS模式中耦合的陆面水文过程模型TOPX提供满足精度要求的日蒸散量驱动参数。  相似文献   

13.
为了解不同干旱指标在西藏高原地区的适用性,本文通过利用Pa、MI、SPI、CI和FAO P-M干旱指数对西藏高原月尺度旱情等级进行评估,分析了各指标在描述旱情时的异同,并统计出各种指数的一致性及等级差异。结果表明:近20 a干旱过程中,MI、FAO P-M指数未监测出轻旱等级,而对于中旱、重旱等级,FAO P-M指数表现较好。从空间分布来看,FAO P-M指数在各个地区表现较好。从时间分布来看,FAO P-M指数在不同干旱过程期间,描述的干旱强度和中心位置与实际情况更接近;其次是Pa指数,其他指数综合表现相对较差。5种干旱指数在衡量西藏地区干旱程度上的一致性并不好;从两两指数之间反映干旱程度上出现一致性频次上看出,Pa-FAO P-M指数出现的次数最多,其次是Pa-SPI-CI指数的出现次数,MI-CI指数的出现次数最少。通过差异性分析得出,全区干旱指数不一致率平均大于20%,阿里地区和林芝地区的干旱指数整体不一致率最高,拉萨地区的干旱指数整体不一致率最低。  相似文献   

14.
基于吉林省50个气象站1960—2014年逐日最高气温、最低气温、日照时数、风速数据,采用Penman-Monteith算法,计算各站逐日参考作物蒸散量,进而计算各站及全省四季和年平均参考作物蒸散量,利用数理统计方法,结合地理信息系统软件,分析参考作物蒸散量的时空变化特征及主要气候影响因子。结果表明:近55 a,吉林省年平均参考作物蒸散量为876 mm,年参考作物蒸散量呈显著下降趋势(p <0. 01);空间分布差异显著,由东南向西北逐级递增,56%的站点呈显著下降趋势(p <0. 05)。参考作物蒸散量夏季最大、春季次之、冬季最小,且均呈下降趋势,但只有春季的下降趋势显著(p <0. 01);春、夏、秋、冬季与年平均参考作物蒸散量在空间分布上基本一致,但气候倾向率为负值以及通过显著性检验的站点数依次减少。全省四季和年参考作物蒸散量均与降水呈显著负相关,与日照时数、风速、最高气温呈显著正相关;其中年、春、夏、秋季与气温日较差以及春、夏、秋季与平均气温也呈显著正相关;冬季与最低气温、平均气温呈显著正相关;而典型站点参考作物蒸散量各季节影响因素及影响大小略有差异,各气象因子的共同作用导致了参考作物蒸散量的变化。  相似文献   

15.
基于修正的Penman-Monteith(P-M)模型,利用1980~2020年黄河源区的气象台站观测数据和陆-气间水热交换观测试验数据,计算出该区域的陆面参考蒸散量,分析了黄河源区蒸散量的时空演变特征,探讨了影响黄河源区蒸散量变化的原因。结果表明:(1)修正的P-M模型能较准确地估算黄河源区的参考蒸散量,与实际观测的相关系数在0.85以上。(2)黄河源区的蒸散量总体呈上升趋势,但在20世纪80年代中期和90年代中期均呈显著减少趋势;近年来,中部和西部地区的蒸散量呈减少趋势,而东部地区的蒸散量呈增加趋势。(3)黄河源区年蒸散量呈自东向西减小的分布特征,东、中、西部地区分别为473.5~516.0mm、437.6~473.5mm和386.3~437.6mm;四季蒸散量差异明显,夏季最大,春季和秋季次之,冬季最小。(4)黄河源区蒸散量随温度、风速和日照时数的增加而增大,随相对湿度和降水量的增大而减小。   相似文献   

16.
高素华  康玲玲 《气象》2005,31(6):74-76
采用最大可能蒸散、作物实际蒸散、水分盈亏、水分订正系数评价了黄土高原多沙粗沙区主要作物(春小麦、冬小麦、春玉米、夏玉米和棉花)和草地生长季水分供需状况,结果表明,需水量:冬小麦>棉花>春玉米>春小麦>夏玉米;水分订正系数:春玉米>夏玉米>棉花>春小麦>冬小麦。草地需水量为350~450mm,水分订正系数0.95以上,水分供需矛盾小,实施退耕还牧无论对缓解水资源短缺,还是改善生态环境,在黄土高原多沙粗沙区都是十分有效的措施。  相似文献   

17.
在土壤水分蒸散量测量仪器研制中,首次在蒸渗计的原状土柱与反滤层接触部分安装了自动补(抽)水设备,使土桶内原状土柱与大田内的土壤水分保持一致。提出了传感器的参数选用原则和蒸渗计标定方法。经过安装和标定使用,GQZ—Z1蒸渗计的精度达到设计和观测0.1mm的要求,能够有效提高农田蒸散量的观测精度,其测定值能很好地反映植物在短时段内的蒸散变化。  相似文献   

18.
用Priestley-Taylor模式计算棉田实际蒸散量的研究   总被引:6,自引:1,他引:5       下载免费PDF全文
在农田蒸散试验资料的基础上,综合考虑影响棉田实际蒸散的气象条件,棉花生物学特性和土壤水分等因素,利用Priestley-Taylor模式、棉花叶面积指数和相对有效土壤湿度建立了棉田实际蒸散量的计算模式。该模式仅需常规气象和农业气象资料,具有较高的精度,便于在干旱区推广使用。  相似文献   

19.
根据南京地区粳稻、籼稻两个品种水稻分别在干旱、水层条件下的逐时、逐日蒸散量观测资料,采用Penman-Monteith模型(以下简称PM模型)对水稻蒸散量进行模拟,并对比模拟蒸散值与观测蒸散值。通过计算,对PM模型的可靠性进行验证。结果表明:(1)水层条件下PM模型的精度比干旱条件下高。(2)模拟值乘以作物系数后,与蒸散实际测量值更加接近。(3)通过敏感性分析可知,使用PM模型进行蒸散量模拟时,方程中各个因子取值的准确性对模拟结果的精确度有较大影响,计算时要合理确定各个因子值。(4)水层条件下稻田的蒸散量明显大于干旱条件下的蒸散量。  相似文献   

20.
根据月平均气温、月降水量推算蒸散量   总被引:1,自引:0,他引:1  
因为从月平均气温、月平均降水量推算蒸散量的桑斯威特(Thornth-waite)公式适用范围比较小,假定降水量、蒸散量和最大水汽压成比例,可以求得适用于更大范围的经验公式。为了检验这些经验公式的精度,把从这些公式计算的蒸散量,P-E比与实测的蒸散量,气候状况等进行比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号