首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Li Jun 《大气科学进展》1995,12(2):255-258
TheCapabilityofAtmosphericProfileRetrievalfromSatelliteHighResolutionInfraredSounderRadiancesLiJun(李俊)(Cooperativeinstitutefo...  相似文献   

2.
In this paper, a new retrieval method, i.e., the Statistical-Physical Retrieval Method (STPRM) has been developed. It is a combination of both statistical and physical method. On this basis, a retrieval system of temperature-humidity profiles and cloud parameters has been developed. By use of the developed TOVS STPRM the distribution of atmospheric temperature, humidity and geopotential height on isobaric surface can be obtained. In comparison with the statistical method and physical method, the TOVS STPRM system not only has the advantage of convenience in use, quickness in data processing and accuracy in retrieval result, but also can display cloud evolution on screen.  相似文献   

3.
    
In this paper, a new retrieval method, i.e., the Statistical-Physical Retrieval Method (STPRM) has been developed. It is a combination of both statistical and physical method. On this basis, a retrieval system of temperature-humidity profiles and cloud parameters has been developed. By use of the developed TOVS STPRM the distribution of atmospheric temperature, humidity and geopotential height on isobaric surface can be obtained. In comparison with the statistical method and physical method, the TOVS STPRM system not only has the advantage of convenience in use, quickness in data processing and accuracy in retrieval result, but also can display cloud evolution on screen.  相似文献   

4.
The physical retrieval algorithm of atmospheric temperature and moisture distribution from the Atmospheric InfraRed Sounder (AIRS) radiances is presented. The retrieval algorithm is applied to AIRS clear-sky radiance measurements. The algorithm employs a statistical retrieval followed by a subsequent nonlinear physical retrieval. The regression coefficients for the statistical retrieval are derived from a dataset of global radiosonde observations (RAOBs) comprising atmospheric temperature, moisture, and ozone profiles. Evaluation of the retrieved profiles is performed by a comparison with RAOBs from the Atmospheric Radiation Measurement (ARM) Program Cloud And Radiation Testbed (CART) in Oklahoma, U. S. A.. Comparisons show that the physically-based AIRS retrievals agree with the RAOBs from the ARM CART site with a Root Mean Square Error (RMSE) of 1K on average for temperature profiles above 850 hPa, and approximately 10% on average for relative humidity profiles. With its improved spectral resolution, AIRS depicts more detailed structure than the current Geostationary Operational Environmental Satellite (GOES) sounder when comparing AIRS sounding retrievals with the operational GOES sounding products.  相似文献   

5.
云参数对RTTOV5模式模拟误差的影响分析   总被引:3,自引:0,他引:3       下载免费PDF全文
该文根据1998年8月的业务TOVS反演的温度、水汽垂直廓线资料以及其它资料, 利用RTTOV5模式模拟NOAA14极轨气象卫星上相应红外探测 (HIRS) 通道的辐射亮温值, 将模拟值对比实测TOVS探测资料, 结果表明, 晴空模式模拟亮温与实测值的误差小于部分有云时的误差, 模拟误差受云的影响呈反相变化, 对水汽敏感的中低层探测通道在晴空时的误差小于部分有云情况; 通过对比白天和夜间短波窗区探测通道模拟误差, 分析了其受地面反射太阳光辐射的影响的大小及其原因所在; 并利用RTTOV5的伴随模式和Jacobine模式分析了模式模拟误差对初始场云参数的敏感性。该研究为TOVS/ATOVS探测资料在3DR或4DR变分同化中的直接应用奠定了基础。  相似文献   

6.
Summary A microwave radiometer with channels near the 18 GHz water vapor line and in nearby windows, the Special Sensor Microwave/Temperature-2 (SSM/T-2) was launched on a Defense Meteorological Satellite Program (DMSP) satellite in November of 1991. The instrument is intended to provide data for the retrieval of atmospheric water vapor profiles. Because the relationship between the radiances observed by the instrument and the water vapor profile are both non-linear and non-local and because of the influence of clouds, the interpretation of the radiances is inherently complex. Here we develop a simplified, albeit approximate, algorithm for the profile retrievals and test it with simulation studies. Specifically it is shown that for each channel of the instrument near the 183 GHz line there is a nearly constant overburden of water vapor above the height at which the atmospheric temperature equals the observed brightness temperature. This relationship, in turn, provides the basis for a simple analytic algorithm for the relative humidity immediately above that height.The simplified algorithm is useful as a first guess for iterative solutions to the non-linear equations and for a variety of analyses such as estimating the impact of uncertainty in the radiances or the temperature profile on the retrieved water vapor profile. It is also useful as a conceptual tool to aid in the understanding of the more complex algorithms.With 7 Figures  相似文献   

7.
Abstract

The direct assimilation of satellite radiances is now operational in a few forecast centres, providing global temperature (T) and moisture (Q) information. The critical parameters which influence the quality of the resulting analysis are mainly the selection of channels, the respective errors of the background field and radiance observations, and the quality of the radiative transfer model. These various aspects are studied from sensitivity experiments based on 1‐D variational assimilations using the ensemble of 19 infrared channels (HIRS) of the NOAA‐14 satellite.

It is shown that significant improvements in the retrievals would be obtained if the radiance observation error (measurement plus radiative transfer), currently estimated to be about equal to that of the background (in radiance units), were decreased. This could in principle be achieved by improving the forward radiative transfer model (RTM). Two RTMs suitable for radiance assimilation are compared in terms of analyzed increments, Jacobians, brightness temperature and equivalent background error. Important differences are noted for all of these interrelated measures. The existence of air‐mass dependent biases of fast radiative transfer models of the order of 1.5 K is confirmed in several channels from additional comparison with a line‐by‐line model. The importance of correctly specifying surface emissivity and the effective angle for downward calculations is demonstrated.

The paper also evaluates, in some detail, the impact of uncertainties on the background error covariance matrix. The uncertainty on the skin temperature (TJ error affects mostly the retrieval of that parameter; it has a modest impact on the T and Q profiles in the low troposphere. The uncertainty on the Q‐Q elements has more impact than that on the T‐T elements. Off‐diagonal elements of the background error covariance matrix are very important as they impose smoothness and level‐to‐level consistency, especially for Q retrievals. Finally, Ts‐T correlations, often ignored, could result in significant improvements in the retrieval of temperature at low levels. Research issues are discussed in the conclusion.  相似文献   

8.
Summary Geosynchronous satellite soundings from the VISSR Atmospheric Sounder (VAS) have difficulty resolving thermal variations in the troposphere associated with mesoscale dynamical processes. For example, VAS soundings retrieved during a late winter storm on 6 March 1982 scarcely resolved a mid-tropospheric cold pool and a low-level inversion which were captured by a special radiosonde network established as part of an Atmospheric Variability Experiment (AVE) in the south-central United States. In this paper, VAS radiances from the 6 March 1982 AVE/VAS case are re-processed using supplementary radiosonde soundings obtained at NWS radiosonde sites in the central United States to construct a local regression retrieval matrix. The re-processed VAS retrievals are compared to the original VAS retrievals and to an independent mesoscale radiosonde network located in north-central Texas. The re-processed VAS retrievals delineate the three-dimensional mesoscale temperature fields for this case with significantly improved accuracy, indicating that the poor resolution from the previous retrievals was not due to unexpected limitations in the satellite radiometer. More importantly, in order to obtain accurate upper-air temperature analyses over the United States at mesoscale resolution, the results from this case suggest that it may be necessary to develop a system which combines temperature and moisture profiles observed at selected sites in an asynoptic ground-based network (using either balloons or upward-looking microwave sensors) with infrared radiances observed at 30 km horizontal resolution from the geosynchronous sounder, using the VAS satellite data to fill in the gaps between the ground-based measurements.With 11 Figures  相似文献   

9.
地基微波辐射计探测大气边界层高度方法   总被引:4,自引:3,他引:1       下载免费PDF全文
采用2013年中国科学院大气物理研究所香河大气综合观测试验站的地基微波辐射计和激光雷达观测数据,以激光雷达探测的大气边界层高度为参考,分别利用非线性神经网络和多元线性回归方法建立微波亮温直接反演大气边界层高度的算法,并对比两种方法的反演能力, 同时分析非线性神经网络算法在不同时段及不同天气状况下反演结果的差异。结果表明:非线性神经网络算法的反演能力优于多元线性回归算法,其反演结果与激光雷达探测的大气边界层高度有较好一致性,冬、春季的相关系数达到0.83,反演精度比线性回归算法约高26%;对于不同时段和不同天气条件,春季的反演结果最好,晴空的反演结果好于云天; 四季和不同天气状况的划分也有利于提高反演精度。  相似文献   

10.
Back propagation neural networks are used to retrieve atmospheric temperature profiles from NOAA-16 Advanced Microwave Sounding Unit-A (AMSU-A) measurements over East Asia. The collocated radiosonde observation and AMSU-A data over land in 2002-2003 are used to train the network, and the data over land in 2004 are used to test the network. A comparison with the multi-linear regression method shows that the neural network retrieval method can significantly improve the results in all weather conditions. When an offset of 0.5 K or a noise level of ±0.2 K is added to all channels simultaneously, the increase in the overall root mean square (RMS) error is less than 0.1 K. Furthermore, an experiment is conducted to investigate the effects of the window channels on the retrieval. The results indicate that the brightness temperatures of window channels can provide significantly useful information on the temperature retrieval near the surface. Additionally, the RMS errors of the profiles retrieved with the trained neural network are compared with the errors from the International Advanced TOVS (ATOVS) Processing Package (IAPP). It is shown that the network-based algorithm can provide much better results in the experiment region and comparable results in other regions. It is also noted that the network can yield remarkably better results than IAPP at the low levels and at about the 250-hPa level in summer skies over ocean. Finally, the network-based retrieval algorithm developed herein is applied in retrieving the temperature anomalies of Typhoon Rananim from AMSU-A data.  相似文献   

11.
李俊  曾庆存 《大气科学》1997,21(3):341-347
我们已经研究了晴空情况下的大气红外遥感及其反演问题。本文对有云情况下的大气红外遥感及其反演问题进行了研究,首先指出国际上通用的处理有云反演的晴空订正法存在误差放大问题,然后提出了3×3相邻视场同步反演法,在该方法中,假定3×3相邻视场具有共同的大气温度廓线和大气水汽廓线,从而使求解方程数增加到9倍,而反演参数只增加有限的几个,大大提高了有云情况下反演的稳定性。  相似文献   

12.
This study investigates the use of dynamic a priori error information according to atmospheric moistness and the use of quality controls in temperature and water vapor profile retrievals from hyperspectral infrared (IR) sounders. Temperature and water vapor profiles are retrieved from Atmospheric InfraRed Sounder (AIRS) radiance measurements by applying a physical iterative method using regression retrieval as the first guess. Based on the dependency of first-guess errors on the degree of atmospheric moistness, the a priori first-guess errors classified by total precipitable water (TPW) are applied in the AIRS physical retrieval procedure. Compared to the retrieval results from a fixed a priori error, boundary layer moisture retrievals appear to be improved via TPW classification of a priori first-guess errors. Six quality control (QC) tests, which check non-converged or bad retrievals, large residuals, high terrain and desert areas, and large temperature and moisture deviations from the first guess regression retrieval, are also applied in the AIRS physical retrievals. Significantly large errors are found for the retrievals rejected by these six QCs, and the retrieval errors are substantially reduced via QC over land, which suggest the usefulness and high impact of the QCs, especially over land. In conclusion, the use of dynamic a priori error information according to atmospheric moistness, and the use of appropriate QCs dealing with the geographical information and the deviation from the first-guess as well as the conventional inverse performance are suggested to improve temperature and moisture retrievals and their applications.  相似文献   

13.
Accurate information on atmospheric temperature of tropical cyclones (TCs) is important for monitoring and prediction of their developments and evolution. For hurricanes, temperature anomaly in the upper troposphere can be derived from Advanced Microwave Sounding Unit (AMSU) and Advanced Technology Microwave Sounder (ATMS) through either regression-based or variational retrieval algorithms. This study investigates the dependency of TC warm core structure on emission and scattering processes in the forward operator used for radiance computations in temperature retrievals. In particular, the precipitation scattering at ATMS high-frequency channels can significantly change the retrieval outcomes. The simulation results in this study reveal that the brightness temperatures at 183 GHz could be depressed by 30–50 K under cloud ice water path of 1.5 mm, and thus, the temperature structure in hurricane atmosphere could be distorted if the ice cloud scattering was inaccurately characterized in the retrieval system. It is found that for Hurricanes Irma, Maria, and Harvey that occurred in 2017, their warm core anomalies retrieved from ATMS temperature sounding channels 4–15 were more reasonable and realistic, compared with the retrievals from all other channel combinations and earlier hurricane simulation results.  相似文献   

14.
F. Weng  X. Zou  Z. Qin 《Climate Dynamics》2014,43(5-6):1439-1448
Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit-A (AMSU-A) observations from a series of National Oceanic and Atmospheric Administration satellites have been extensively utilized for estimating the atmospheric temperature trend. For a given atmospheric temperature condition, the emission and scattering of clouds and precipitation modulate MSU and AMSU-A brightness temperatures. In this study, the effects of the radiation from clouds and precipitation on AMSU-A derived atmospheric temperature trend are assessed using the information from AMSU-A window channels. It is shown that the global mean temperature in the low and middle troposphere has a larger warming rate (about 20–30 % higher) when the cloud-affected radiances are removed from AMSU-A data. It is also shown that the inclusion of cloud-affected radiances in the trend analysis can significantly offset the stratospheric cooling represented by AMSU-A channel 9 over the middle and high latitudes of Northern Hemisphere.  相似文献   

15.
The Multivariate and Minimum Residual(MMR) cloud detection and retrieval algorithm, previously developed and tested on simulated observations and Advanced Infrared Sounder radiance, was explored and validated using various radiances from multiple sensors. For validation, the cloud retrievals were compared to independent cloud products from Cloud Sat, MODIS(Moderate Resolution Imaging Spectroradiometer), and GOES(Geostationary Operational Environmental Satellites). We found good spatial agreement within a single instrument, although the cloud fraction on each pixel was estimated independently. The retrieved cloud properties showed good agreement using radiances from multiple satellites, especially for the vertically integrated cloud mask. The accuracy of the MMR scheme in detecting mid-level clouds was found to be higher than for higher and lower clouds. The accuracy in retrieving cloud top pressures and cloud profiles increased with more channels from observations. For observations with fewer channels, the MMR solution was an "overly smoothed" estimation of the true vertical profile, starting from a uniform clear guess. Additionally, the retrieval algorithm showed some meaningful skill in simulating the cloudy radiance as a linear observation operator, discriminating between numerical weather prediction(NWP) error and cloud effects. The retrieval scheme was also found to be robust when different radiative transfer models were used. The potential application of the MMR algorithm in NWP with multiple radiances is also discussed.  相似文献   

16.
黄静  邱崇践  张艳武 《高原气象》2005,24(6):913-919
HIRS/3资料的反演是一个典型的非适定问题,而奇异值分解法(SVD)是一种解病态线性代数方程组的有效方法,它在遇到矩阵的不适定问题时依然可以保持其数值稳定性并能尽量多地利用各探测通道的有效信息。将SVD方法应用于卫星资料的温度反演问题中可以将资料空间和参数空间分型,从中提取有效信息来反演大气温度廓线。通过理想资料试验,分析了温度廓线初猜值、水汽廓线误差等因素对温度反演结果的影响。结果表明:对HIRS/3资料来说,用SVD法反演大气温度廓线时只能截取一定的阶数,以取4~7为宜;温度廓线初猜值的选取对反演结果的影响较大,当模式层的中层误差较大时得到的反演结果最稳定;水汽廓线的扰动对中低层的温度反演结果和第5,8,10,11和16通道的亮温值有较大影响。  相似文献   

17.
OptimalUseofHighResolutionInfraredSounderChannelsinAtmosphericProfileRetrieval¥LiJun(李俊)andHuangHung-Lung(黄鸿荣)(Permanentaffil...  相似文献   

18.
A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture, an EOF technique is used to decompose the temperature and moisture field in a 3-D space. A number of numerical simulations are conducted and they demonstrate that the 3-D method is less sensitive to the observation errors compared to the 1-D method. When the observation error is more than 2.0 K, to get the best results, the truncation number for the EOF's expansion have to be restricted to 2 in the 1-D method, while it can be set as large as 40 in a 3-D method. This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method. Compared to the 1-D method, the rms errors of the 3-D method are reduced by 48% and 36% for the temperature and moisture retrievals, respectively. Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002, the temperature and moisture profiles are retrieved over a region (20°-45°N, 100°- 125°E) and compared with 37 collocated radiosonde observations. The results show that the retrieval accuracy with a 3-D method is significantly higher than those with the 1-D method.  相似文献   

19.
充分利用国家科技部大力推行的DVB-S共享数据平台,加强气象卫星遥感数据的广泛应用,特别是发挥卫星垂直探测器(ATOVS)资料在我国数值天气预报以及监测重大灾害性天气系统中的作用。该文介绍了基于DVB-S系统的NOAA/ATOVS资料的处理、分析与显示系统的概况及主要功能,并以2005年7月人们关注的台风“海棠”为个例,展示了利用该系统在监测和分析台风或强对流天气时的独特优势。该系统的建立,将解决省、地气象部门不能实时获取ATOVS资料的问题,并将推动ATOVS资料在气象以及相关部门的实际应用。  相似文献   

20.
概述了利用特征向量统计回归反演算法,从EOS/MODIS的红外通道资料反演大气温湿度垂直分布的过程,并与美国国家环境预报中心NCEP(National Centers for Environmental Prediction)的等压面再分析场资料按照纬度和气压高度进行了真实性检验。结果表明:由MODIS资料反演得到的大气温湿度参数能够揭示大气温湿度的垂直分布。在各个等压面上均方根误差平均值在中纬度地区为3.39K,低纬度地区为1.40K,近地面层、对流层顶附近及下垫面地形复杂的区域误差较大,总体上低纬度地区要好于中纬度地区。反演的水汽误差也为低纬度地区小于中纬度地区,且随高度升高,中、高纬度误差都逐渐减小并逐渐接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号