首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tracer experiments were carried out in groyne fields (GF) of the river Elbe near Havelberg (Germany) in order to estimate the hydraulic connectivity with the river channel. The characteristic times of the five groyne fields, which were estimated from the exponentially declining tracer curves in 43 runs, ranged between 15 min and 69 min and did not correlate with the water level. Methodological investigations show that single point injection and two measurements (in the outflowing water and in the dominant region) are sufficient to provide robust in‐situ tracer curves. Using simplified mathematical simulations with connected stirred tanks, the conditions are investigated for the development of breaks in tracer curves and for the occurrence of significant errors in the estimation of intrinsic residence times. It was shown that an initial uniform dye distribution is not mandatory for the estimation during steady states. In special cases, point injections are more advisable. Moreover, the mean hydraulic residence time was found to be not equivalent to the estimated characteristic time. In fact, it is mostly overestimated by tracer experiments. The degree of overestimation depends on mixing and the volumetric proportions between the different parts of the GF and can be calculated from measured dye concentration differences. For example, an overestimation of 32% was calculated for a groyne field with a commonly found circulation flow pattern.  相似文献   

2.
Markus Weiler   《Journal of Hydrology》2005,310(1-4):294-315
Simulating infiltration in soils containing macropores still provides unsatisfactory results, as existing models seem not to capture all relevant processes. Recent studies of macropore flow initiation in natural soils containing earthworm channels revealed a distinct flow rate variability in the macropores depending on the initiation process. When macropore flow was initiated at the soil surface, most of the macropores received very little water while a few macropores received a large proportion of the total inflow. In contrast, when macropore flow was initiated from a saturated or nearly saturated soil layer, macropore flow rate variation was much lower. The objective of this study was to develop, evaluate, and test a model, which combines macropore flow variability with several established approaches to model dual permeability soils. We then evaluate the INfiltration–INitiation–INteraction Model (IN3M) to explore the influence of macropore flow variability on infiltration behavior by performing a sensitivity analysis and applying IN3M to sprinkling and dye tracer experiments at three field sites with different macropore and soil matrix properties. The sensitivity analysis showed that the flow variability in macropores reduces interaction between the macropores and the surrounding soil matrix and thus increases bypass flow, especially for surface initiation of macropore flow and at higher rainfall intensities. The model application shows reasonable agreement between IN3M simulations and field data in terms of water balance, water content change, and dye patterns. The influence of macropore flow variability on the hydrological response of the soil was considerable and especially pronounced for soils where initiation occurs at the soil surface. In future, the model could be applied to explore other types of preferential flow and hence to get a generally better understanding of macropore flow.  相似文献   

3.
4.
Understanding runoff generation processes is important for flood prediction, water management, erosion control, water quality, contaminant transport and the evaluation of impacts of land use change. However, little process research has been carried out in southern Chile. In particular the young volcanic ash soils, which are typical for this area, are not well understood in their hydrologic behaviour. To establish a ‘reference study’ which can then be used for comparison with other (disturbed) sites, this study focuses on the investigation of runoff generation processes in an undisturbed, forested catchment in the Chilean Andes. The paper reports on an investigation of these processes with different tracer methods at different spatial scales. Hydrograph separation with environmental isotopes and geochemical constituents was used on the catchment scale. Thermal energy was used as a tracer to investigate groundwater–surface water interactions at the local stream reach scale and dye tracers were used to study infiltration and percolation characteristics at the plot scale. It was found that pre‐event water dominates the storm hydrograph. In the lower reaches, however, water usually exfiltrates from the stream into the adjacent aquifer. The dye tracer experiments showed that while preferential vertical flow dominates under forest, water infiltrates as a straight horizontal front in the bare volcanic ashes (no vegetation) on the catchment rim. Subsurface flow patterns in the forest differ significantly from summer to winter. All three approaches used in this study suggest an important shift in dominant processes from dry to wet season. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A point dilution test is commonly used in single-borehole tracer experiments designed to determine the Darcy velocity of a formation. This method is based on the concept that, in a borehole, a tracer's concentration declines as a consequence of the water flux. Based on theoretical simulations and field observations, this study indicates that for low-permeability, yet highly porous fractured formations, the common practice of excluding the effect of diffusive mass flux between the dissolved tracer within the borehole and the surrounding matrix may lead to significant errors in the assessment of the Darcy velocity. This conclusion was confirmed by a model adapted to simulate experimental data collected from a tracer test performed in a vertical, large-diameter (25-cm) borehole drilled along a subvertical fracture intersecting a chalk formation.  相似文献   

6.
Agricultural use of soils implies tillage and often compaction and therefore influences processes on soil surface and affects infiltration of water into the subsoil. Although many studies on soil surface processes or flow patterns in soils exist, works relating both are rare in literature. We did two tracer experiments with Brilliant Blue FCF on a tilled and compacted plot and a non‐tilled one to investigate water storage on the soil surface during simulated rainfall and changes of soil microtopography, to analyse the associated flow patterns in the soil and to relate both to tillage and compaction. Our results show that storage was larger on the tilled and compacted plot than on the non‐tilled one. After tillage, transport processes above the plough pan were partly disconnected from those underneath because macropores were disrupted and buried by the tillage operation. However, preferential flow along cracks occurred on both plots and the macropores buried below the tillage pan still functioned as preferential flow paths. Therefore, we conclude that the studied soil is susceptible to deep vertical solute propagation at dry conditions when cracks are open, irrespective of tillage and compaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Water flow through a melting snow pack modifies its structure and stability and affects the release of water and nutrients into soils and surface waters. Field and laboratory observations indicate a large spatial variability on various scales of the liquid water content and flow, a dominant system feature currently not included in numerical models. We investigated experimentally water and dye tracer movement through microstructurally different snow pack horizons and the persistence of preferential flow paths. Naturally rounded snow of varying grain size was artificially packed to obtain well known conditions by sieving it into rectangular bins. Surface melt was induced with infrared lamps. The flow paths were visualized with tracers and liquid water content was monitored with time domain reflectometry probes. Vertical cuts through the snow pack were imaged. The dye tracer patterns allowed the two flow regimes ‘matrix flow’ and ‘preferential flow’ to be distinguished. Matrix flow is apparently dominated by film and capillary flow in the unsaturated snow matrix. The capillary barrier effect at a boundary between a fine over a coarse textured layer on matrix flow in snow was confirmed. In contrast, preferential flow appears as well‐defined flow fingers that advance from 0·1 to 1 cm s?1. During a melt phase, the advancing flow fingers enlarge and are only partially time invariant. It remains to be shown whether the continuum concept, including the Darcy–Buckingham law is apt to describe the extremely non‐linear nature of water flow and the travel time of solutes in snow under conditions of melt water percolation. Probably, snow packs that include faceted crystals and large variations in bulk density, feature more pronounced capillary barriers and preferential flow triggering, but also stronger impeding of fingers by lateral dispersion. Further, triggering and persistence of preferential flow is complicated by the usually transient infiltration rate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Representing runoff process complexity in a simple model structure remains a challenge in hydrology. We present an integrated approach to investigate runoff processes using a hillslope tracer experiment and modeling exercise to explore model parameterization, process representation, and transit times. A spatially-explicit model constrained by soil hydrologic properties, runoff, and applied tracer data was used to identify the dominant processes necessary to explain both water and solute flux from a steep hillslope. The tracer data allowed for the rejection of model parameter sets based on the calibration to runoff data alone, thus reducing model uncertainty. The additional calibration to tracer data, improved parameter identifiability and provided further insight to process controls on hillslope-scale water and solute flux. Transit time distributions developed using the model provided further insight to model structure such as subsurface volume, mixing assumptions, and the water table dynamics. Combining field experiments with the modeling exercise may lead to a more comprehensive assessment of runoff process representation in models.  相似文献   

9.
10.
Four experiments were performed to examine the relationship between the meltwater flow field and ion release from melting snow. A 0.4 m3 volume of snow was placed in a Plexiglass box and melted from above using a heating plate. The meltwater and solute fluxes issuing from the bottom of the snow were monitored. In experiments with NaCl tracer added to the snow, the solute concentrations were generally lower in the flow fingers than in the background wetting front. Dye tracer experiments revealed contemporaneous areas of concentrated dye and dilute meltwater in flow fingers. This suggests that the meltwater in flow fingers is diluted by low concentration water from the top of the snowpack. Flow fingers contribute more meltwater flux primarily because the flow is maintained for a longer period of time than in the non-finger areas; however, the relative contribution of flow fingers to solute flux was apparently not as great as that of the background wetting front because of dilution of solute in the flow finger areas.  相似文献   

11.
Runoff from boreal hillslopes is often affected by distinct soil boundaries, including the frozen boundary and the organic‐mineral boundary (OMB), where highly porous and hydraulically conductive organic material overlies fine‐grained mineral soils. Viewed from the surface, ground cover appears as a patchwork on sub‐meter scales, with thick, moss mats interspersed with lichen‐covered, silty soils with gravel inclusions. We conducted a decameter‐scale subsurface tracer test on a boreal forest hillslope in interior Alaska to quantify locations and mechanisms of transport and storage in these soils, focusing on the OMB. A sodium bromide tracer was added as a slug addition to a pit and sampled at 40 down‐gradient wells, screened primarily at the OMB and within a 7 × 12 m well field. We maintained an elevated head in the injection pit for 8.5 hr to simulate a storm. Tracer breakthrough velocities ranged from <0.12 to 0.93 m hr?1, with the highest velocities in lichen‐covered soils. After 12 hr and cessation of the elevated head, the tracer coalesced and was only detected in thick mosses at a trough in the OMB. By 24 hr, approximately 17% of the tracer mass could be accounted for. The majority of the mass loss occurred between 4 and 12 hr, while the tracer was in contact with lichen‐covered soils, which is consistent with tracer transport into deeper flow paths via preferential flow through discrete gravelly areas. Slow breakthroughs suggest that storage and exchange also occurred in shallow soils, likely related to saturation and drainage in fine‐grained mineral soils caused by the elevated hydraulic head. These findings highlight the complex nature of storage and transmission of water and solutes from boreal hillslopes to streams and are particularly relevant given rapid changes to boreal environments related to climate change, thawing permafrost and increasing fire severity.  相似文献   

12.
Flow velocity is a basic hydraulic property of surface flows and its precise calculation is necessary for process based hydrological models, such as soil erosion and rill development models, as well as for modelling sediment and solute transport by runoff. This study presents a technique based on infrared thermography to visualize very shallow flows and allow a quantitative measurement of overland flow and rill flow velocities. Laboratory experiments were conducted to compare the traditional dye tracer technique with this new thermal tracer technique by injecting a combined tracer (heated dye) into shallow flowing surface water. The leading edge tracer velocities estimated by means of infrared video and by the usual real imaging video were compared. The results show that thermal tracers can be used to estimate both overland and rill flow velocities, since measurements are similar to those resulting from using dye tracers. The main advantage of using thermography was the higher visibility of the leading edge of the injected tracer compared with the real image videos. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Macropores are important preferential pathways for the migration of water and contaminants through the vadose zone. The objective of this study was to examine small‐scale preferential flow processes during infiltration in macroporous, low permeability soils. A series of tension infiltration tests were conducted using Brilliant Blue dye tracer at two field sites in southwestern Ontario, Canada. The maximum applied pressure head was varied for each test and the resulting dye stain patterns and macropore networks were characterized by excavation, mapping, photography, and image analysis. Worm burrows were the dominant macropore type, with average macropore densities exceeding 400 m?2 and peak densities of more than 750 m?2 at 30 cm depth at both sites. Flow in macropores became significant at infiltration pressures > ? 3 cm, with corresponding increases in infiltration rate, soil water content variability (spatially and temporally), and depth of dye staining. The results demonstrated clear evidence for partially saturated macropore flow under porewater tension conditions and the associated importance of macropore–matrix interaction in controlling this flow. Field observations of transient infiltration showed that film and rivulet flow along macropores yielded vertical flow velocities exceeding 40 m d?1. Simple calculations showed that film flow along the walls and corners of irregularly shaped macropores could explain the observed results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Models simulating stream flow and conservative tracers can provide a representation of flow paths, storage distributions and mixing processes that is advantageous for many predictive purposes. Compared with models that only simulate stream flow, tracer data can be used to investigate the internal consistency of model behaviour and to gain insight into model performance. Here, we examine the strengths and weaknesses of a data‐driven, spatially distributed tracer‐aided rainfall‐runoff model. The model structure allowed us to assess the influence of landscape characteristics on the routing and mixing of water and tracers. The model was applied to a site in the Scottish Highlands with a unique tracer data set; ~4 years of daily isotope ratios in stream water and precipitation were available, as well as 2 years of weekly soil and ground water isotopes. The model structure was based on an empirically based, lumped tracer‐aided model previously developed for the catchment. The best model runs were selected from Monte Carlo simulations based on dual calibration criteria using objective functions for both stream isotopes and discharge at the outlet. Model performance for these criteria was reasonable (Nash–Sutcliffe efficiencies for discharge and isotope ratios were ~0.4–0.6). The model could generally reproduce the variable isotope signals in the soils of the steeper hill slopes where storage was low, and damped isotope responses in valley bottom cells with high storage. The model also allowed us to estimate the age distributions of internal stores, water fluxes and stream flow. Average stream water age was ~1.6 years, integrating older groundwater in the valley bottom and dynamic younger soil waters. By tracking water ages and simulating isotopes, the model captured the changes in connectivity driven by distributed storage dynamics. This has substantially improved the representation of spatio‐temporal process dynamics and gives a more robust framework for projecting environmental change impacts. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

15.
16.
To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber‐optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30‐m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS‐based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.  相似文献   

17.
Water and solute movement in a coarse-textured water-repellent field soil   总被引:6,自引:0,他引:6  
Unstable water flow in water-repellent unsaturated soils can significantly affect the processes of infiltration and soil water redistribution. A field experiment was carried out to study the effect of water-repellency on water and bromide movement in a coarse-textured soil in the southwestern part of The Netherlands. The field data were analyzed using a relatively simple numerical model based on the standard Richards' equation for unsaturated water flow and the Fickian-based convection-dispersion equation for solute transport. Water-repellency was accounted for by multiplying the water content and the unsaturated hydraulic conductivity of the soil with F, a factor equal to the volumetric fraction of soil occupied by preferential flow paths resulting from the unstable flow process. The good comparison of simulated and measured bromide concentrations suggests that the model provides a viable method for simulating unstable water flow in water-repellent soils.  相似文献   

18.
In this work, the deposition of clay-sized fine particles (d50 = 0.006 mm) and its subsequent influence on the dune-induced hyporheic exchange are investigated. Fine sand (D50 = 0.28 mm), coarse sand (D50 = 1.7 mm), and gravel (D50 = 5.5 mm) grains were used to form homogenous model streambeds; one control - no clay input, and two treatments - increasing clay inputs for each grain type. The results indicate that the clogging profiles of clay-sized sediments may not be predicted accurately using the previously proposed metric based on the relative sizes of infiltrating and substrate sediments. Further, the depositional patterns vary with the initial concentration of clay particles in the surface water. The assessment of clogging profiles in coarse-grained model streambeds also reveals a preferential infiltration of the clay particles in the hyporheic downwelling regions. The results from the dye tracer test suggest that the accumulation of clay particles altered the exchange characteristics in the treatment flumes. For each grain size, the treatment flumes exhibit lower hyporheic flux and higher median residence times compared to their respective control flumes. The dye penetration depths were lower in treatment flumes with fine and coarse sand compared to their respective control flumes. Interestingly, higher penetration depths were observed in treatment flumes with gravel compared to their respective control flume potentially due to the generation of preferential flow paths in the partially clogged gravel beds. The clogging altered the hyporheic fluxes and residence times in the coarse-grained model beds to a greater degree in comparison to the fine sand beds. Overall, our findings indicate that the properties of both fine and substrate sediments influence the clogging patterns in streambeds, and the subsequent influence of fine sediment clogging on hyporheic exchange and associated processes may vary across stream ecosystems.  相似文献   

19.
用二维MHD数值模拟研究了地球磁层顶的涡旋重联和单X线重联,并将两者作了比较。涡旋重联和单X线重联各在Alfvèn马赫数M_Λ大于和小于0.5时出现于向阳面磁层顶。前者所产生的磁岛与涡旋同心重叠;后者磁力线重联仅产生X点,而不闭合形成磁岛,涡旋分布于X点两侧。在涡旋重联的自组织过程中,互螺旋度等近似守恒决定其渐近态的拓扑结构。最后,讨论了这两种重联对通量传输事件所起的不同作用。  相似文献   

20.
Part of a small drainage basin on the Sevilleta National Wildlife Refuge (about 25 km north of Socorro, NM) was intensively instrumented with soil monitoring equipment to estimate natural ground-water recharge. Soil-moisture data were analysed with special attention to characterizing the influence of topography on the direction of vadose water flow paths in fine to medium aeolian sand. Moisture content data were obtained by the neutron scattering technique, and hydraulic head data were obtained using tensiometers. In addition, tracer experiments were conducted on a sandy hillslope to delineate the flow paths of vadose water. The results indicate that there is a strong lateral component to unsaturated flow on a hillslope, even in the absence of apparent sublayers of much lower permeability. Darcian calculations estimate the long-term, steady, deep flux beneath a concave location to be about 4 per cent of an assumed mean annual precipitation of 20 cm. The deep soil water flux downward varied by several orders of magnitude during the 17 month period of record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号