首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The critical accretion flow of gas onto compact stars with mass of 0.6M is investigated by numerical integrations of the time-dependent hydrodynamic equations in the sphericallysymmetric and optically thick case. For the compact stars surrounded by such a dense cloud of gas, the radiation pressure force decelerates the infall gas significantly and free fall regime of the gas is not at all attained. This results in incident low velocities at the standing shock front close to the stellar surface, low temperatures of the gas around the compact stars, and no X-ray in white dwarfs but soft X-rays in neutron stars, respectively. Some applications of the results to the X-ray sources are discussed.  相似文献   

2.
Pulsars are presently believed to be rotating neutron stars with frozen-in magnetic fields. Because of the high density of neutron stars, general relativistic effects are important since they effect both the structure and stability of such stars. Besides this, the magnetic field outside the star is also affected. Instead of falling of asr (2+l) as in flat space, it is shown that each magnetic multipole varies as a hypergeometric function of radius. A closed form of these hypergeometric functions is given in terms of Legendre functions of the second kind. If the mass of a neutron star exceeds about 2.4m , the star becomes unstable and coliapses. For a quasistatically collapsing body, it is shown that the magnetic field seen by a distant observer vanishes as the radius approaches the gravitational radius.This work was supported in part by the Air Force Office of Scientific Research, Office of Aerospace Research under AFOSR Grant 70-1866.  相似文献   

3.
In the context of the MIT bag model we compute the mass defect and the gravitational packing factor for three models of strange stars and study the contribution of gravitational and internal energy to the total energy of the system. For strange stars it is possible to realize a model with negative internal energy, leading to a greater binding energy of these stars compared to neutron stars. This is the reason for the absence of configurations with negative mass defect for the models in question. We analyze the question of identifying the remnants of supernovae with neutron or strange stars.Translated fromAstrofizika, Vol. 38, No. 2, 1995.  相似文献   

4.
More and more observational hints of quark stars are proposed these years though pulsars are considered conventionally to be normal neutron stars. The existence of low-mass quark stars is a direct consequence of the possibility that pulsar-like stars are actually quark stars, because of the ability that quark matter can confine itself by color interaction. After a brief introduction to the study of quark stars, the various astrophysical implications of low-mass quark stars are investigated. It is addressed that some of the transient unidentified γ -ray sources are probably merging quark stars. The observability of low-mass quark stars is discussed.  相似文献   

5.
Recent ROSAT measurements show that the X-ray emission from isolated neutron stars is modulated at the stellar rotation period. To interpret these measurements, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We present nearly analytic models of the thermal structure of the envelopes of ultramagnetized neutron stars. Specifically, we examine the limit in which only the ground Landau level is filled. We use the models to estimate the amplitude of modulation expected from non-uniformities in the surface temperatures of strongly magnetized neutron stars. In addition, we estimate cooling rates for stars with fields B  ∼ 1015 − 1016 G, which are relevant to models that invoke 'magnetars' to account for soft γ-ray emission from some repeating sources.  相似文献   

6.
We investigate the influence of the following parameters on the crust properties of strange stars: the strange quark mass (m s), the strong coupling constant (αc) and the vacuum energy density (B). It is found that the mass density at the crust base of strange stars cannot reach the neutron drip density. For a conventional parameter set of m s=200 MeV, B 1/4 = 145 MeV and αc = 0.3, the maximum density at the crust base of a typical strange star is only 5.5 × 1010 gcm-3, and correspondingly the maximum crust mass is 1.4 ×10-6 M. Subsequently, we present the thermal structure and the cooling behavior of strange stars with crusts of different thickness, and under different diquark pairing gaps. Our work might provide important clues for distinguishing strange stars from neutron stars.  相似文献   

7.
We study universality in gravitational waves emitted from non-rotating neutron stars characterized by different equations of state (EOSs). We find that the quasi-normal mode frequencies of such waves, including the w -modes and the f -mode, display similar universal scaling behaviours that hold for most EOSs. Such behaviours are shown to stem from the mathematical structure of the axial and the polar gravitational wave equations, and the fact that the mass distribution function can be approximated by a cubic–quintic polynomial in the radius. As a benchmark for other realistic neutron stars, a simple model of neutron stars is adopted here to reproduce the pulsation frequencies and the generic scaling behaviours mentioned above with good accuracy.  相似文献   

8.
On the basis of the current knowledge about the size of the neutron, the nucleon-nucleon interaction, and the limit on the ratioGm/c 2 R<4/9 imposed by General Relativity, we find an upper limit of about 2M , for stars of uniform density in the neutron phase. The importance of an accurate determination of the neutron radius for neutron stars studies is pointed out.  相似文献   

9.
Intermediate-range gravitational forces have been predicted by certain grand unified theories. If such forces exist, they would naturally affect the structure of neutron stars. Here, a simple rotating neutron star model is constructed which, under fairly mild assumptions, can be integrated exactly for the pressure. According to this model, the effect on neutron star masses by intermediate range forces is negligible, except when the range approaches the radius of the star and the coupling constant is close to the usual gravitation constant. In addition, extremely short range forces can be shown to have negligible effect, even when the coupling constant is many orders of magnitude greater thanG. Thus, there appears to be little hope of using neutron star mass measurements to test such grand unified theories.  相似文献   

10.
Recently launched X-ray telescopes have discovered several candidate isolated neutron stars. The thermal radiation from these objects may potentially constrain our understanding of nuclear physics in a realm inaccessible to terrestrial experiments. To translate the observed fluxes from neutron stars into constraints, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We describe models of the thermal structure of the envelopes of neutron stars with magnetic fields up to 1014 G. Unlike earlier work, we infer the properties of envelope models in two dimensions and precisely account for the quantization of the electron phase-space. Both dipole and uniformly magnetized envelopes are considered.  相似文献   

11.
Strange stars are compact objects similar to neutron stars composed of strange matter. This paper investigates the observational effects of the strong interaction between quarks. We believe: 1) that the conversion of a neutron star to a strange star is a large “period glitch” which is determined by the strong interaction; 2) that the strong interaction results in effective damping of oscillation of hot strange stars, which could be a new mechanism of driving supernova explosions; 3) that the strong interaction increases the difference in rotation between strange and neutron stars under high temperatures, making the minimum period for strange stars lower than that for neutron stars.  相似文献   

12.
The motions of comets and neutron stars have been integrated over five billion years in the Galactic potential to determine a gamma-ray burst distribution, presuming that bursts are the result of interactions between these two families of objects. The comets originate in two distinct populations - one from ejection by stars in the Galactic disk, and the other from ejection by stars in globular clusters. No choice of the free parameters resulted in agreement with both the isotropy data and the log(N >F)-log(F) data.  相似文献   

13.
We discuss the possible observational manifestation of the formation of massive black holes in galactic nuclei in the form of an intense high-energy neutrino flux. A short-lived (≤10 yr) hidden neutrino source results from the natural dynamicalal evolution of a central star cluster in the galactic nucleus before its gravitational collapse. The central star cluster at the final evolutionary stage consists of degenerate compact stars (neutron stars and stellar-mass black holes) and is embedded in a massive gaseous envelope produced by destructive collisions of normal stars. Multiple fireballs from frequent collisions of neutron stars give rise to a tenuous quasi-stationary cavity in the central part of the massive envelope. The cavity is filled with shock waves on which an effective cosmic-ray acceleration takes place. Allthe accelerated particles, except the secondary high-energy neutrinos, are absorbed in the dense envelope. The neutrino signal that carries information on the dynamicals of the collapsing galactic nucleus can be recorded by a neutrino detector with an effective area S∼1 km2.  相似文献   

14.
We propose that single stars in the mass range 4–6·5M , that explode as Supernovae of Type I, are totally disrupted by the explosion and form shell-type remnants. More massive single stars which explode as Supernovae of Type II also give rise to shell-type remnants, but in this case a neutron star or a black hole is left behind. The first supernova explosion in a close binary also gives rise to a shell-type supernova remnant. The Crab-like filled-centre supernova remnants are formed by the second supernova explosion in a close binary. The hybrid supernova remnants, consisting of a filled centre surrounded by a shell, are formed if there is an active neutron star inside the shell.  相似文献   

15.
The applications of the spectral analysis methods discovered by Kirchhoff for the investigation of stellar magnetic fields are considered. The statistical properties of the mean magnetic fields for OBA stars have been investigated by analyzing data from two catalogs of magnetic fields. It is shown that the mean effective magnetic field ℬ of a star can be used as a statistically significant characteristic of its magnetic field. The magnetic field distribution functions F(ℬ) have been constructed for B-type and chemically peculiar (CP) stars, which exhibit a power-law dependence on ℬ. A sharp decrease in F(ℬ) in the range of weak magnetic fields has been found. The statistical properties of the magnetic fluxes for main-sequence stars, white dwarfs, and neutron stars are analyzed.  相似文献   

16.
Pulsars have been recognized to be normal neutron stars, but sometimes have been argued to be quark stars. Submillisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. We focus on the formation of such submillisecond pulsars in this paper. A new approach to the formation of a submillisecond pulsar (quark star) by means of the accretion-induced collapse (AIC) of a white dwarf is investigated. Under this AIC process, we found that: (i) almost all newborn quark stars could have an initial spin period of ∼0.1 ms; (ii) nascent quark stars (even with a low mass) have a sufficiently high spin-down luminosity and satisfy the conditions for pair production and sparking process and appear as submillisecond radio pulsars; (iii) in most cases, the times of newborn quark stars in the phase with spin period <1 (or <0.5) ms are long enough for the stars to be detected.
As a comparison, an accretion spin-up process (for both neutron and quark stars) is also investigated. It is found that quark stars formed through the AIC process can have shorter periods (≤0.5 ms), whereas the periods of neutron stars formed in accretion spin-up processes must be longer than 0.5 ms. Thus, if a pulsar with a period shorter than 0.5 ms is identified in the future, it could be a quark star.  相似文献   

17.
Abstract— The classical model of s-process nucleosynthesis, based on the concept of a steady neutron flux under astrophysical conditions pertaining to the He-burning phase of red giant stars, has successfully described observed isotopic abundances and provided information on the physical conditions of the s-process environment. Because most of the isotopes on the s-process path are stable, their relevant nuclear parameters can be measured in the laboratory so that as more accurate elemental abundance and neutron capture cross-section data have become available, the classical model has been tested under increasingly stringent conditions. Accurate determinations of the neutron capture cross sections at appropriate astrophysical conditions for the Ba isotopes have shown that the abundance of the s-only isotope 136Ba is under-produced by ~20% according to the classical model. This paper describes the accurate assessment of the meteoritic abundance of Ba by the stable isotope dilution mass spectrometric technique, based on the Cl carbonaceous chondrites Orgueil and Ivuna. Repeated analyses of these two Cl chondrites give an abundance that is identical to the presently accepted solar system value for Ba within experimental errors, which indicates a deficiency in the classical model. When combined with similar data for the s-only nuclides 116Sn and 142Nd, it is apparent that the classical model, having served a valuable function for many years, must be replaced by stellar models that more accurately reflect the dynamic nature of the He-burning phase in red giant stars, in particular, during the thermal pulses of low-mass asymptotic giant branch (AGB) stars.  相似文献   

18.
In this work we present a stellar structure model from the f(R)-gravity point of view capable of describing some classes of stars(white dwarfs, brown dwarfs, neutron stars, red giants and the Sun). This model is based on f(R)-gravity field equations for f(R) = R + f_2R~2, hydrostatic equilibrium equation and a polytropic equation of state. We compare the results obtained with those found by Newtonian theory. It has been observed that in these systems, where high curvature regimes emerge,stellar structure equations undergo modifications. Despite the simplicity of this model, the results are satisfactory. The estimated values of pressure, density and temperature of the stars are within those determined by observations. This f(R)-gravity model has proved to be necessary to describe stars with strong fields such as white dwarfs, neutron stars and brown dwarfs, while stars with weaker fields, such as red giants and the Sun, are best described by Newtonian theory.  相似文献   

19.
This paper is a discussion of some results from papers by followers of V. A. Ambartsumyan, whose fundamental articles serve as the beginning of research on superdense stars: white dwarfs and neutron stars. Solutions of the Einstein equations are given for the case of axial symmetry and are used to determine the integral parameters of rotating neutron stars and white dwarfs. A theory of magnetic field generation in neutron stars has been developed and is consistent with the existence of high, nonuniform magnetic fields on the order of 1014 G in pulsars. A theory has been proposed for the dynamics of neutron vortices and used to explain the observed relaxation of the angular velocity of pulsars following glitches.  相似文献   

20.
The primary nature of the 13C neutron source is very significant for the studies of the s -process nucleosynthesis. In this paper we present an attempt to fit the element abundances observed in 16 s -rich stars using parametric model of the single neutron exposure. The calculated results indicate that almost all s -elements were made in a single neutron exposure for nine sample stars. Although a large spread of neutron exposure is obtained, the maximum value of the neutron exposure will reach about 7.0 mbarn−1, which is close to the theoretical predictions by the asymptotic giant branch (AGB) model. The calculated result is a significant evidence for the primary nature of the neutron source. Combining the result obtained in this work and the neutron exposure–initial mass relations, a large spread of neutron exposure can be explained by the different initial stellar mass and their time evolution. The possibility that the rotationally induced mixing process can lead to a spread of the neutron exposure in AGB stars is also existent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号