首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Coral reef terraces are one of the best recorders of relative sea-level changes during the last glacial cycle. Thus far, knowledge of relative sea-level record based on coral reefs during the marine Oxygen Isotope Stage (OIS) 3 has been limited to studies of the Huon Peninsula, Papua New Guinea. High-precision a α-spectrometric 230Th/234U dating demonstrated an offlapping sequence of five coral reef complexes, ages of which are 66, 64, 62, 55 and 52 ka, in the northern part of Kikai Island, central Ryukyus of Japan. Interstadial reefs, characterized by deepening-upward sequences of coral assemblages, recorded three hemicycles from transgression to highstand at 52, 62, and 66 ka, during which these reefs were drowned. These highstands in the relative sea-level record can be correlated with the eustatic record reconstructed from the Huon reef terraces and with the interstadials 14, 18, and 19 of the GISP 2 oxygen isotope record. This consistency confirms the Huon sea-level record of OIS 3 and implies that the eustatic sea level responded to the millennial-scale climate changes even during the glacial period of OIS 4.  相似文献   

2.
Direct dating of fossil coral reefs using the U-series chronometer provides an important independent test of the Milankovitch orbital forcing theory of climate change. However, well-dated fossil corals pre-dating the last interglacial period (>130 thousand years ago; ka) are scarce due to, (1) a lack of sampling localities, (2) insufficient analytical precision in U-series dating methods, and (3) diagenesis which acts to violate the assumption of closed-system U-series isotopic decay in fossil corals. Here we present 50 new high-precision U-series age determinations for fossil corals from Henderson Island, an emergent coral atoll in the central South Pacific. U-series age determinations associated with the Marine Isotope Stage (MIS) 9 interglacial and MIS 7.5 interstadial periods are reported. The fossil corals show relatively little open-system U-series behaviour in comparison to other localities with fossil coral reefs formed prior to the last glacial cycle, however, open-system U-series behaviour is still evident in most of the dated corals. In particular, percent-level shifts in the [230Th/238U]act composition are observed, leading to conventional U-series ages that are significantly younger or older than the true sample age. This open-system U-series behaviour is not accounted for by any of the open-system U-series models, indicating that new models should be derived. The new U-series ages reported here support and extend earlier findings reported in Stirling et al. (2001), providing evidence of prolific coral reef development on Henderson Island at ∼320 ka, most likely correlated with MIS 9.3, and subsequent reef development at ∼307 ka during MIS 9.1, while relative sea-level was potentially ∼20 m lower than during MIS 9.3. The U-series ages for additional well-preserved fossil corals are suggestive of minor reef development on Henderson Island during MIS 7.5 (245-230 ka) at 240.3 ± 0.8 and 234.7 ± 1.3 ka. All U-series observations are consistent with the Milankovitch theory of climate change, in terms of the timing of onset and termination of the dated interglacial and interstadial periods. The best preserved samples also suggest that the oceanic 234U/238U during MIS 9 and MIS 7.5 was within five permil of the modern open ocean composition.  相似文献   

3.
Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2 ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26 m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2 ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism.  相似文献   

4.
The occurrence of a series of raised coral reefs from the uplifted island of Malakula (Vanuatu, SW Pacific) provide an opportunity to examine sea-level fluctuations over at least the past 120,000 years. Thirteen fossil coral samples from Malakula were analyzed by the thermal ionization mass spectrometry (TIMS) U/Th dating technique, yielding information on sea levels during late marine isotope stage 3 and early stage 4. Our findings are in good agreement with sea-level estimates from raised coral terraces in Papua New Guinea and the recent sea-level reconstruction from the deep-sea sedimentary δ18O records. In particular, our coral data appear to confirm that sea levels at about 45,000–50,000 yr B.P. were only 30 to 60 m below the present level. Combined with other evidence of sea-level change, our data provide a strong case for much higher sea levels and therefore markedly reduced continental ice volume at 47,000 to 49,000 years ago.  相似文献   

5.
Thirty-one new bulk-sediment U–Th dates are presented, together with an improved δ18O stratigraphy, for ODP Site 1008A on the slopes of the Bahamas Banks. These ages supplement and extend those from previous studies and provide constraints on the timing of sea-level highstands associated with marine isotope stages (MIS) 7 and 9. Ages are screened for reliability based on their initial U and Th isotope ratios, and on the aragonite fraction of the sediment. Twelve ‘reliable’ dates for MIS 7 suggest that its start is concordant with that predicted if climate is forced by northern-hemisphere summer insolation following the theory of Milankovitch. But U–Th and δ18O data indicate the presence of an additional highstand which post-dates the expected end of MIS 7 by up to 10 ka. This event is also seen in coral reconstructions of sea-level. It suggests that sea-level is not responding in any simple way to northern-hemisphere summer insolation, and that tuned chronologies which make such an assumption are in error by ≈10 ka at this time. U–Th dates for MIS 9 also suggest a potential mismatch between the actual timing of sea-level and that predicted by simple mid-latitude northern-hemisphere forcing. Four dates are earlier than that predicted for the start of MIS 9. Although the most extreme of these dates may not be reliable (based on the low-aragonite content of the sediment) the other three appear robust and suggest that full MIS 9 interglacial conditions were established at 343 ka. This is ≈8 ka prior to the date expected if this warm period were driven by northern-hemisphere summer insolation.  相似文献   

6.
A survey of raised coral reef terraces in locations along the southern coast of Iran was carried out with the aim of assessing regional Late Quaternary tectonic uplift rates influenced by salt doming. Two islands were studied: Kish, where no previous data were available, and Qeshm, where a previous survey had already attributed the lowest step in two sequences of raised marine terraces to the Last Interglacial.Twenty-five ESR and seven Th/U ages were obtained from Kish Island. The results show that this flat, about 32 m high, gently domed island was totally submerged during the last two interglacial periods. Corals ascribed to MIS 5 and MIS 7 have been dated at the same elevations, near the present sea level, and in the uppermost, inner part of the island, giving evidence of a polycyclic origin for the island surface deposits. Following a discussion on the possible position of eustatic peaks during MIS 7, a maximal average uplift rate of 0.20±0.02 mm/yr has been deduced from the above data.Furthermore, the survey obtained some new results from Qeshm, where seven ESR ages confirmed the MIS 5 age of the lowest raised marine terrace (that also corresponds to an uplift rate of about 0.2 mm/yr), failing, however, to date older steps, due to significant coral-sample re-crystallisation. In the western part of Qeshm, five new radiocarbon ages of elevated beach material demonstrated the variability of uplift rates even along short distances around an active salt dome.  相似文献   

7.
Late Pleistocene age terrace deposits are exposed in the narrow cliffed coastal plain of Bahia Coyote, Baja California Sur, resting unconformably on the lagoonal-shallow water volcaniclastics of the early Miocene Cerro Colorado Member of the El Cien Formation. The terrace is dissected by widely spaced arroyos and partically covered by alluvial fans in the inner and central areas. The marine deposits vary in thickness from 0.5 to 10 m and were laid down in pre-existing erosional channels and depressions in the Pleistocene landscape. The sequence begins with a cobble conglomerate with oyster shells, overlain by poorly bedded molluscan-rich bioclastic sands and coral rubble, beds of massive Porites in growth position and coral-rhodolith sands and marls. Beach sands and gravels and coastal dunes cap the sequence.Samples of Porites panamensis selected for U/Th dating are well-preserved aragonite (>95%). Preliminary results yield U/Th ages of 109–209 ka but the corals have initial δ 234U values in excess of modern seawater values. This indicates open-system behavior and uncertainty associated with the ages. A corrected age for the top of the massive Porites unit suggests that the corals grew during the last interglacial, marine isotope stage (MIS) 5e sea level high stand.Assuming global sea level during MIS 5e was ca. 4–5 m above present-day sea level (McCulloch and Esat, 2000) and the growth position of the corals was 1–5 m below sea level, the terraces have been uplifted between 12 and 25 m (12–15 cm/kyr). This is consistent with other terrace-based uplift rates for the central Baja California peninsula, north of the La Paz fault.  相似文献   

8.
《Quaternary Science Reviews》2007,26(17-18):2090-2112
The geomorphology and morphostratigraphy of numerous worldwide sites reveal the relative movements of sea level during the peak of the Last Interglaciation (Marine Isotope Stage (MIS) 5e, assumed average duration between 130±2 and 119±2 ka). Because sea level was higher than present, deposits are emergent, exposed, and widespread on many stable coastlines. Correlation with MIS 5e is facilitated by similar morphostratigraphic relationships, a low degree of diagenesis, uranium–thorium (U/Th) ages, and a global set of amino-acid racemization (AAR) data. This study integrates information from a large number of sites from tectonically stable areas including Bermuda, Bahamas, and Western Australia, and some that have experienced minor uplift (∼2.5 m/100 ka), including selected sites from the Mediterranean and Hawaii. Significant fluctuations during the highstand are evident at many MIS 5e sites, revealed from morphological, stratigraphic, and sedimentological evidence. Rounded and flat-topped curves derived only from reef tracts are incomplete and not representative of the entire interglacial story. Despite predictions of much different sea-level histories in Bermuda, the Bahamas, and Western Australia due to glacio- and hydro-isostatic effects, the rocks from these sites reveal a nearly identical record during the Last Interglaciation.The Last Interglacial highstand is characterized by several defined sea-level intervals (SLIs) that include: (SLI#1) post-glacial (MIS 6/5e Termination II) rise to above present before 130 ka; (SLI#2) stability at +2 to +3 m for the initial several thousand years (∼130 to ∼125 ka) during which fringing reefs were established and terrace morphology was imprinted along the coastlines; (SLI#3) a brief fall to near or below present around 125 ka; (SLI#4) a secondary rise to and through ∼+3–4 m (∼124 to ∼122 ka); followed by (SLI#5) a brief period of instability (∼120 ka) characterized by a rapid rise to between +6 to +9 m during which multiple notches and benches were developed; and (SLI#6) an apparently rapid descent of sea level into MIS 5d after 119 ka. U/Th ages are used to confirm the Last Interglacial age of the deposits, but unfortunately, in only two cases was it possible to corroborate the highstand subdivisions using radiometric ages.Sea levels above or at present were relatively stable during much of early MIS 5e and the last 6–7 ka of MIS 1, encouraging a comparison between them. The geological evidence suggests that significant oceanographic and climatic changes occurred thereafter, midway through, and continuing through the end of MIS 5e. Fluctuating sea levels and a catastrophic termination of MIS 5e are linked to the instability of grounded and marine-based ice sheets, with the Greenland (GIS) and West Antarctic (WAIS) ice sheets being the most likely contributors. Late MIS 5e ice volume changes were accompanied by oceanographic reorganization and global ecological shifts, and provide one ominous scenario for a greenhouse world.  相似文献   

9.
This paper aims to provide insight into human occupation and landscape change during the Pleistocene in a central area of the Lower Tejo basin (Portugal). Detailed geomorphological mapping, coupled with lithostratigraphy, sedimentology and luminescence dating, supports the identification of a complete terrace staircase sequence. It consists of six gravely terraces located below the culminant (Pliocene) basin unit. A chronological framework for the sedimentary sequences and associated human industries is proposed and correlated with marine oxygen isotope stages (MIS): T1 terrace, not dated; T2, not dated; T3, >300 ka; T4, ∼300-160 ka (MIS8, MIS7 and MIS6); T5, ∼136-75 ka (MIS5); T6, ∼62-30 ka (MIS3); colluvium and aeolian sands, ∼30-14 ka (MIS2); valley fill deposits, ∼14 ka to present (MIS1). The oldest artefacts were found at the base of the T4 terrace, with the local stratigraphic level dated to ≥175 ± 6 ka (Middle Pleistocene). The lithic assemblages collected from distinct stratigraphic levels (T4, T5 top, T6 terraces and colluvium) are characterized by the predominance of opportunistic technological choices, a feature that can be attributed partly to the preferential exploitation of the available raw material, dominated by local-sourced quartzites and quartz pebbles. The adaptation to local raw material (texture and volume), together with subsistence patterns and behaviours, could explain the rarity of Acheulian types (handaxes and cleavers) and picks in the T4 terraces of the Tejo tributaries; this is in contrast to the same terrace of the Tejo valley, in which these types are found. Interpretation of the environmental conditions (controlled by climate and glacio-eustatic sea-level changes) affecting the hunter-gatherer human groups is also presented.  相似文献   

10.
Marine aragonite, in the form of corals and/or shells, provides useful markers of geological and archaeological events. It is, therefore, important to have simple and accurate methods of dating these materials. Electron spin resonance (ESR) has previously been shown to be a reliable method for establishing the age of aragonitic coral samples in the time period approximately 100 ka B.P. The primary purpose of the present work is to discuss the problems encountered in extending this method to considerably older samples, up to 600 ka BP in age. In this time period there are questions about the stability of the ESR signal. The samples investigated are aragonitic corals from reef terraces of Barbados, West Indies, all of which have previously been dated by the methods, and by U-series disequilibrium, for samples below the limit of this method. There is generally good agreement for samples up to about 300 ka in age; older samples, even unrecrystallized, appear younger when dated by ESR than by . The source of this discrepancy is not clear. The explanation of thermal fading is not adequate. However, it appears likely that in most cases ESR will be able to be used to date materials up to this age. Further investigation is needed to determine tests that will distinguish datable samples from non-datable ones.  相似文献   

11.
《Quaternary Science Reviews》2007,26(3-4):536-559
The Ironshore Formation on Grand Cayman is formed of six unconformity-bounded packages (units A–F). Units A, B, C, and D, known from the subsurface in the northeastern part of Grand Cayman, formed during Marine Isotope Stages (MIS) 11(?), 9, 7, and 5e, respectively. Unconformities at the tops of units A, B, and C are highlighted by terra rossa and/or calcrete layers. Strata in core obtained from wells drilled in George Town Harbour and exposed on the west part of Grand Cayman belong to unit D, and the newly defined units E and F. Corals from unit E yielded Th/U ages of ∼104 ka whereas conch shells from unit F gave ages of ∼84 ka. Unit E equates to MIS 5c whereas unit F developed during MIS 5a.Th/U dating of corals and conchs from the Ironshore Formation on the western part of Grand Cayman shows that unit D formed during the MIS 5e highstand whereas units E and F developed in association with highstands at 95–110 ka (MIS 5c) and 73–87 ka (MIS 5a). Unit E, ∼5 m thick in the offshore cores, is poorly represented in onshore exposures. Unit F, which unconformably overlies unit D at most localities, is formed largely of fossil-poor, cross-bedded ooid grainstones. The unconformity at the top of unit D, a marine erosional surface with up to 2.5 m relief, is not characterized by terra rossa or calcrete in the offshore cores or onshore exposures. Unit D formed with a highstand of +6 m asl, whereas units E and F developed when sea level was +2 to +5 asl and +3 to +6 m asl, respectively. Thus, the highstands associated with MIS 5e, 5c, and 5a were at similar elevations.  相似文献   

12.
A detailed study of uplifted Middle–Late Pleistocene marine terraces on the eastern side of northern Calabria, southern Italy, provides insights into the temporal and spatial scale variability of vertical displacement rates over a time span of 400 ka. Calabria is located in the frontal orogen of southern Italy above the westerly-plunging Ionian slab, and a combination of lithospheric, crustal, and surface processes concurred to rapid Late Quaternary uplift. Eleven terrace orders and a raised Holocene beach were mapped up to 480 m a.s.l., and were correlated between the coastal slopes of Pollino and Sila mountain ranges across the Sibari Plain, facing the Ionian Sea side of northeastern Calabria. Precise corrections were applied to the measured shoreline angles in order to account for uncertainty in measurement, erosion of marine deposits, recent debris shedding, and bathymetric range of markers. Radiometric (ESR and 14C) dating of shells provides a crono-stratigraphic scheme, although many samples were found to be resedimented in younger terraces. Terrace T4, whose inner margin stands at elevations of 94–130 m, is assigned to MIS 5.5 (124 ka), based on new ESR dating and previous amino acid racemization estimations. The underlying terraces T3, T2 and T1 are attributed to MIS 5.3 (100 ka), 5.1 (80 ka) and 3 (60 ka), as inferred from their relative position supplemented by ESR and 14C age determinations. The age of higher terraces is poorly constrained, but conceivably is tracked back to MIS 11 (400 ka). The reconstructed depositional sequence of terraces attributed to MIS 5.5 and 7 reveals two regressive marine cycles separated by an alluvial fanglomerate, which, given the steady uplift regime, points to minor sub-orbital sea-level changes during interstadial highstands. Based on the terrace chronology, uplift in the last 400 ka occurred at an average rate of 1 mm/a, but was characterized by the alternation of more rapid (up to 3.5 mm/a) and slower (down to 0.5 mm/a) periods of displacement. Spatial variability in uplift rates is recorded by the deformation profile of terraces parallel to the coast, which document the growth of local fold structures.  相似文献   

13.
We examined 14 subaerially deposited speleothems retrieved from submerged caves in the northeastern Yucatán Peninsula (Mexico). These speleothems grew during the Middle to Late Quaternary and were dated by 230Th-U techniques to provide upper depth limits for past sea levels. We report the first relative sea-level limits for Marine Isotope Stages (MIS) 11 and 6, and present new evidence for sea-level oscillations during MIS 5 and early MIS 1. For the latter periods, the origin of growth interruptions is evaluated by combining petrographic methods with trace element analyses. The MIS 5c sea-level highstand probably occurred between 103.94 ± 0.58 ka and 96.82 ± 0.42 ka and must have exceeded -10.8 m (relative to present-day local sea level). The minimum average rate of sea-level fall over a 9.4 ka-long period during the MIS 5e/5d transition is calculated from stalagmite and published coral data at 1.74 ± 0.37 m/ka. For the early Holocene, previous discrepancies with respect to a potential multimetre oscillation of local sea level were found to be challenging to reconcile with the existing speleothem data from the area.  相似文献   

14.
西沙群岛西科1井碳酸盐岩稳定同位素地层学   总被引:2,自引:0,他引:2       下载免费PDF全文
西科1井由于矿化重结晶作用和白云岩化作用普遍发育, 无法采用传统的氧同位素地层学方法进行地层年代标定.但是该井δ13C变化曲线与南海及全球主要大洋的碳同位素变化曲线完全相同, 可以用来准确标定200 ka以来的地层年龄.该井0~50 m深度对应全球氧同位素1~7期, 5 m处地层时代为14 ka, 为氧同位素1期的底界年龄; 11.70 m处为氧同位素2期的底界, 年龄为29 ka; 13.90 m深度年龄为57 ka; 到35.65 m为氧同位素6期底界, 年龄为191 ka, 同时δ13C值表现出冰期低而间冰期高的特点, 取自25.21 m的珊瑚U-Th定年年龄为131.062±2.320 ka.通过碳同位素定年发现, 石岛缺失近代5 ka以来的沉积物, 在间冰期向冰期转换时因海平面下降造成碳酸盐台地暴露剥蚀.全球气候变化是石岛碳酸盐台地δ13C值发生突变的主要原因.   相似文献   

15.
Textural and stable isotopic records of a composite-type speleothem from Gwaneum Cave in the eastern part of the Korean peninsula show prominent paleoenvironmental changes since MIS (marine oxygen isotope stage) 5a. Based on 230Th/234U dating, the speleothem experienced growth from 90.9 ± 6.5 ka to 1.2 ± 0.5 ka with several hiatuses. Four growth phases (A, B, C and D) are recognized based on speleothem type and texture. Very irregular and laterally discontinuous growth laminae in Phases B and C indicate that the cave coralloids grew over the stalagmite (Phase A) when the supply of dripping water became limited. Variations within the δ13C time series of Phase A are interpreted as responses to millennial-scale fluctuations of the East Asian monsoon intensity during MIS 5a. The monsoonal interpretation is based on the idea that δ13C values reflect the isotopic composition of soil-derived CO2, which, in turn, should relate to monsoon-driven changes in terrestrial productivity above the cave during the MIS 5a. Our reconstruction reveals that the significant monsoonal changes on the Korean peninsula occurred in conjunction with changes in sea level and/or oceanic circulations during the transition period from MIS 5a to MIS 4.  相似文献   

16.
A 61-m-long sediment core (HB-1) and 690 km of high-resolution seismic profiles from offshore of the Yellow River delta, Bohai Sea, were analyzed to document the stratigraphy and sea-level changes during the Late Pleistocene and Holocene. Accelerator mass spectrometry 14C dating and analyses of benthic foraminifera, ostracods, the mineral composition, and sedimentary characteristics were performed for core HB-1, and seven depositional units (DU 1–DU 7 in descending order) were identified. The seismic reflection data were interpreted in light of the sedimentological data of the core and correlated with other well-studied cores obtained previously in the Bohai Sea area. Seven seismic units (SU 1 to SU 7 in descending order) were distinguished and interpreted as follows: SU 7 corresponds to marine facies in Marine Isotopic Stage (MIS) 5; SU 6, to terrestrial facies in MIS 4; SU 5 and SU 4, to alternating terrestrial and marine facies (DU 7–DU 5) in MIS 3; SU 3, to terrestrial facies (DU 4) in MIS 2; SU 2, to Holocene marine facies (DU 3 and DU 2); and SU 1, to modern Yellow River delta sediments deposited since 1855 (DU 1).The sedimentary facies from DU 7 to DU 5 reflect sea-level fluctuations during MIS 3, and the boundary between DU 5 and DU 6, which coincides with that between SU 4 and SU 5, is a distinctive, laterally continuous, undulating erosion surface, with up to 20 m of relief. This surface reflects subaerial exposure between transgressions during MIS 3. Estimated sea levels during MIS 3 ranged from −35 ± 5 to −60 ± 5 m or lower, with short-term fluctuations of 20 m. Sedimentary environments in the Bohai Sea area were governed mainly by eustatic sea-level changes and the Bohai Strait topography, which controls the entry of sea water into the Bohai Sea area.The mineral composition of the sediment core suggests that the Yellow River did not discharge into the Bohai Sea, or at least did not influence the study area significantly, during parts of MIS 3 and MIS 2 to the early Holocene (11–8.5 cal kyr BP).  相似文献   

17.
Electron spin resonance (ESR) dating and thermal ionization mass spectrometric 230Th/234U dating was conducted on six teeth from the prehistoric site of Amud Cave. By combining the ESR and 230Th/234U analyses, we obtained burial ages for teeth in various layers of the site. Layer B1/6–7, from which the Amud I Neanderthal skeleton was recovered, is dated to 53 ± 8 ka. Layer B2/8, which yielded other important human remains including the Amud 7 skeleton, gives a mean burial age of 61 ± 9 ka. One tooth from the lowest layer (B4) yielded a date of 70 ± 11 ka, but another tooth from this layer gave an 113 ± 18 ka. Despite this discrepancy, these ages agree with previously published TL ages on heated flints for the corresponding layers. This agreement between ESR on tooth enamel and TL on burned flint is also seen at all other sites studied with both methods in Israel. © 2001 John Wiley & Sons, Inc.  相似文献   

18.
The reef-crest coral Acropora palmata from late Pleistocene reefs on Barbados has recorded the same global variations in oxygen isotopes as planktonic and benthonic foraminifera. Although the record of oxygen isotopes in Acropora palmata is discontinuous, it offers several advantages over the isotope records from deep-sea sediments: (1) the coral grows at water depths of less than 5 m; (2) the samples are unmixed; (3) specimens may be sampled from various elevations of paleo-sea level; and (4) aragonitic corals are suitable for 230Th234U and HeU dating techniques. The latter advantage means that direct dating of the marine oxygen isotope record is possible. Oxygen isotope stage 5e corresponds to Barbados III, dated at 125,000 ± 6000 yr BP. Petrographic and geochemical evidence from five boreholes drilled into the south coast of Barbados indicates a major eustatic lowering (greater than 100 m below present sea level) occurred between 180,000 and 125,000 yr BP. The age and isotopic data suggest correlation of this change in sea level to Emiliani's oxygen isotope stage 6. Acropora palmata deposited at various elevations of sea level during oxygen isotope stage 6 vary by 0.11 ‰ δ18O for each 10 m of change in sea level. We further hypothesize a minimum drop of 2°C in the average temperature occurred during the regressive phase of oxygen isotope stage 6. These data indicate that temperature lowering of surface water near Barbados lagged behind a major glacial buildup during this time period. Using the δ18O vs sea level calibration herein derived, we estimate the relative height of sea stands responsible for Barbados coral reef terraces in the time range 80,000 to 220,000 yr BP.  相似文献   

19.
Electron spin resonance (ESR) and 230Th/234U ages of speleothem samples collected from karstic caves located around 3000 m elevation in the Alada?lar Mountain Range (AMR), south-central Turkey, were determined in order to provide new insight and information regarding late Pleistocene climate. ESR ages were validated with the 230Th/234U ages of test samples. The ESR ages of 21 different layers of six speleothem samples were found to range mostly between about 59 and 4 ka, which cover the Marine Oxygen Isotope Stages (MIS) MIS 3 to MIS 1. Among all, only six layers appear to have deposited during MIS 8 and 5. Most of the samples dated were deposited during the late glacial stage (MIS 2). It appears that a cooler climate with a perennial and steady recharge was more conducive to speleothem development rather than a warmer climate with seasonal recharge in the AMR during the late Quaternary. This argument supports previous findings that suggest a two -fold increase in last glacial maximum mean precipitation in Turkey with respect to the present value.  相似文献   

20.
In situ Pleistocene reefs form a gently sloping nearshore terrace around the island of Oahu. TIMS Th–U ages of in situ corals indicate that most of the terrace is composed of reefal limestones correlating to Marine Oxygen Isotope Stage 7 (MIS 7, ~ 190–245 ka). The position of the in situ MIS 7 reef complex indicates that it formed during periods when local sea level was ~ 9 to 20 m below present sea level. Its extensiveness and geomorphic prominence as well as a paucity of emergent in situ MIS 7 reef-framework deposits on Oahu suggest that much of MIS 7 was characterized by regional sea levels below present. Later accretion along the seaward front of the terrace occurred during the latter part of MIS 5 (i.e., MIS 5a–5d, ~ 76–113 ka). The position of the late MIS 5 reefal limestones is consistent with formation during a period when local sea level was below present. The extensiveness of the submerged Pleistocene reefs around Oahu compared to the relative dearth of Holocene accretion is due to the fact that Pleistocene reefs had both more time and more accommodation space available for accretion than their Holocene counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号