首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Floridan aquifer system (FAS) is known to be one of the most productive aquifer systems in the USA. With the FAS being a karst aquifer, it presents unique challenges to land use planners because of inherent vulnerabilities to contamination through direct connections between the aquifer and the surface. In this study a new Geographic Information Systems (GIS) -based index, the Karst Aquifer Vulnerability Index (KAVI), incorporates geologic layers used in intrinsic groundwater vulnerability models (GVMs) plus an epikarst layer specific to karst, with land use coverages to create a specific groundwater vulnerability model. The KAVI model was compared to another specific vulnerability model, the Susceptibility Index (SI). Tabulation of the percentage areas of vulnerability classes reveals major differences between the two models with SI suggesting greater vulnerability for the study area than KAVI. Validation of these two models found that KAVI vulnerability levels best reproduced spatially varying concentrations of nitrate in the aquifer. Sensitivity analysis, the application of a variation index and measuring the effective weights for each parameter included in KAVI confirmed the importance of closed depressions but also aquifer hydraulic conductivity. The inclusion of land use was justified; however, effective weight analysis determined its assigned weight was too high as used in the initial calculation of KAVI.  相似文献   

2.
Water consumption in Jordan already exceeds renewable freshwater resources by more than 20% and, after the year 2005, freshwater resources are likely to be fully utilised. Over 50% of supply derives from groundwater and this paper focuses on a small part of the northern Badia region of Jordan that is underlain by the Azraq groundwater basin where it has been estimated that annual abstraction stands at over 100% of the projected safe yield. While water supply is a crucial issue, there is also evidence to suggest that the quality of groundwater supplies is also under threat as a result of salinisation and an increase in the use of agrochemicals. Focusing on this area, this paper attempts to produce groundwater vulnerability and risk maps. These maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydro-geological conditions and human impacts. All of the major geological and hydro-geological factors that affect and control groundwater movement into, through, and out of the study area were incorporated into the DRASTIC model. Parameters included; depth to groundwater, recharge, aquifer media, soil media, topography, and impact of the vadose zone. The hydraulic conductivity of the aquifer was not included in calculating the final DRASTIC index for potential contamination due to a lack of sufficient quantitative data. A Geographical Information System (GIS) was used to create a groundwater vulnerability map by overlaying the available hydro-geological data. The resulting vulnerability map was then integrated with a land use map as an additional parameter in the DRASTIC model to assess the potential risk of groundwater to pollution in the study area. The final DRASTIC model was tested using hydrochemical data from the aquifer. Around 84% of the study area was classified as being at moderate risk while the re mainder was classified as low risk. While the analysis of groundwater chemistry was not conclusive, it was encouraging to find that no well with high nitrate levels was found in the areas classified as being of low risk suggesting that the DRASTIC model for this area provided a conservative estimate of low risk areas. It is recognised that the approach adopted to produce the DRASTIC index was limited by the availability of data. However, in areas with limited secondary data, this index provides important objective information that could be used to inform local decision making.  相似文献   

3.
This paper is focused primarily on how to represent landslide scarp areas, how to analyze results achieved by the application of specific strategies of representation and how to compare the outcomes derived by different tests, within a general framework related to landslide susceptibility assessment. These topics are analyzed taking into account the scale of data survey (1:10,000) and the role of a landslide susceptibility map into projects targeted toward the definition of prediction, prevention, and mitigation measures, in a wider context of civil protection planning. These aims are achieved by using ArcSDM (Arc Spatial Data Modeler), a software extension to ArcView GIS useful for developing spatial prediction models using regional datasets. This extension requires a representation by points of the investigated problems (landslide susceptibility, aquifer vulnerability, detection of mineral deposits, identification of natural habitats of animals, and plants, etc.). Maps of spatial evidence from regional geological and geomorphological datasets were used to generate maps showing susceptibility to slope failures in two different study areas, located in the northern Apennines and in the central Alps (Italy), respectively. The final susceptibility maps for both study areas were derived by the application of the weights-of-evidence (WofE) modeling technique. By this method a series of subjective decisions were required, strongly dependent on an understanding of the natural processes under study, supported by statistical analysis of the spatial associations between known landslides and evidential themes. Except for maps of attitude, permeability, and structure, that were not available for both study areas, the other data were the same and comprised geological, land use, slope, and internal relief maps. The paper illustrates how different representations of scarp areas by points (in terms of different number of points) did not greatly influence the final response map, considering the scale of this work. On the contrary, some differences were observed in the capability of the model to describe the relations between predictor variables and landslides. In effect, a representation of the scarp areas using one point every 50 m led to a more efficient model able to better define relationships of this type. It avoided both problems of redundancy of information, deriving by the use of too many points, and problems related to a random positioning of the centroid. Moreover, it permitted to minimize the uncertainty related with identification and mapping of landslides.  相似文献   

4.
A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping   总被引:1,自引:0,他引:1  
This paper describes a hybrid fuzzy weights-of-evidence (WofE) model for mineral potential mapping that generates fuzzy predictor patterns based on (a) knowledge-based fuzzy membership values and (b) data-based conditional probabilities. The fuzzy membership values are calculated using a knowledge-driven logistic membership function, which provides a framework for treating systemic uncertainty and also facilitates the use of multiclass predictor maps in the modeling procedure. The fuzzy predictor patterns are combined using Bayes’ rule in a log-linear form (under an assumption of conditional independence) to update the prior probability of target deposit-type occurrence in every unique combination of predictor patterns. The hybrid fuzzy WofE model is applied to a regional-scale mapping of base-metal deposit potential in the south-central part of the Aravalli metallogenic province (western India). The output map of fuzzy posterior probabilities of base-metal deposit occurrence is classified subsequently to delineate zones with high-favorability, moderate favorability, and low-favorability for occurrence of base-metal deposits. An analysis of the favorability map indicates (a) significant improvement of probability of base-metal deposit occurrence in the high-favorability and moderate-favorability zones and (b) significant deterioration of probability of base-metal deposit occurrence in the low-favorability zones. The results demonstrate usefulness of the hybrid fuzzy WofE model in representation and in integration of evidential features to map relative potential for mineral deposit occurrence.  相似文献   

5.
Index overlay and Boolean logic are two techniques customarily applied for knowledge-driven modeling of prospectivity for mineral deposits, whereby weights of values in evidential maps and weights of every evidence map are assigned based on expert opinion. In the Boolean logic technique for mineral prospectivity modeling (MPM), threshold evidential values for creating binary maps are defined based on expert opinion as well. This practice of assigning weights based on expert opinion involves trial-and-error and introduces bias in evaluating relative importance of both evidential values and individual evidential maps. In this paper, we propose a data-driven index overlay MPM technique whereby weights of individual evidential maps are derived from data. We also propose a data-driven Boolean logic MPM technique, whereby thresholds for creating binary maps are defined based on data. For assigning weights and defining thresholds in these proposed data-driven MPM techniques, we applied a prediction-area plot from which we can estimate the predictive ability of each evidential map with respect to known mineral occurrences, and we use that predictive ability estimate to assign weights to evidential map and to select thresholds for generating binary predictor maps. To demonstrate these procedures, we applied them to an area in the Kerman province in southeast Iran as a MPM case study for porphyry-Cu deposits.  相似文献   

6.
A case application of data-driven estimation of evidential belief functions (EBFs) is demonstrated to prospectivity mapping in Lundazi district (eastern Zambia). Spatial data used to represent recognition criteria of prospectivity for aquamarine-bearing pegmatites include mapped granites, mapped faults/fractures, mapped shear zones, and radioelement concentration ratios derived from gridded airborne radiometric data. Data-driven estimates EBFs take into account not only (a) spatial association between an evidential map layer and target deposits but also (b) spatial relationships between classes of evidences in an evidential map layer. Data-driven estimates of EBFs can indicate which spatial data provide positive or negative evidence of prospectivity. Data-driven estimates of EBFs of only spatial data providing positive evidence of prospectivity were integrated according to Dempster’s rule of combination. Map of integrated degrees of belief was used to delineate zones of relative degress of prospectivity for aquamarine-bearing pegmatites. The predictive map has at least 85% prediction rate and at least 79% success rate of delineating training and validation deposits, respectively. The results illustrate usefulness of data-driven estimation of EBFs in GIS-based predictive mapping of mineral prospectivity. The results also show usefulness of EBFs in managing uncertainties associated with evidential maps.  相似文献   

7.
Weights-of-Evidence (WofE) and Radial Basis Function Link Net (RBFLN) were applied to soil group mapping in eastern Finland. The data consisted of low altitude airborne geophysical measurements, Landsat 5 TM-satellite image, and digital elevation model (DEM) and slope information derived from it. Probability maps were constructed for each soil group one by one and combined into a prediction map of soil groups using maximum posterior probability (WofE) or pattern membership (RBFLN). Self-Organizing Map (SOM) and Sammon’s Mapping were applied for selecting the data sets for modeling and visualizing the data. The soil types belonging to each soil group used in the Arc-SDM modeling were defined by clusters revealed by the SOM and Sammon’s Mapping algorithms. The soil types with similar characters were collected in the same cluster. Numerical evaluation of the models’ performance was performed using the confusion matrix. The Ratio of Correct Classifications (RCC) for the best WofE model was 0.64 in the training area and 0.61 in the testing area. The RCC for the best RBFLN model was 0.62. Modeling of soil groups using Arc-SDM is time consuming because models need to be constructed for each soil group before combining them into a final prediction map. In this study a simple method was tested for combining the maps. In the future, more attention should be paid to combining the posterior probability models and also to selecting data sets used for modeling.  相似文献   

8.
This paper presents mineral prospectivity mapping to identify potential new exploration ground for polymetallic Sn–F–REE mineralization associated with the Bushveld granites of the Bushveld Igneous Complex, South Africa. The Lebowa Granite Suite, commonly known as the Bushveld granites, is host to a continuum of polymetallic mineralization with a wide range of metal assemblages (Sn–Mo–W–Cu–Pb–Zn–As–Au–Ag–Fe–F–U–REE), ranging from a high-temperature to a low-temperature magmatic hydrothermal mineralizing environment. The prospectivity map was generated by fuzzy logic modeling and a selection of targeting criteria (or spatial proxies) based on a conceptual mineral system highlighting critical processes responsible for the formation of the polymetallic mineralization. The spatial proxies include proximity to differentiated granites (as heat and metal-rich fluid sources), Rb geochemical map (fluid-focusing mechanism such as fractionation process), principal component maps (PC 4 Y–Th and PC 14 Sn–W, fluid pathways for both high- and low-temperature mineralization) and proximity to roof rocks (traps for fluids). Logarithmic functions were used to rescale rasterized evidential maps into continuous fuzzy membership scores in a range of [0, 1]. The evidential maps were combined in two-staged integration matrix using fuzzy AND, OR and gamma operators to produce the granite-related polymetallic Sn–F–(REE) prospectivity map. The conceptual mineral system model and corresponding prospectivity model developed in this study yielded an encouraging result by delineating the known mineral deposits and occurrences of Sn–F–(REE) mineralization that were not used to assign weights to the evidential maps. The prospectivity model predicted, on average, 77% of the known mineral occurrences in the BIC (i.e., 56 of 73 Sn occurrences, 12 of 15 F occurrences and 6 of 8 REE occurrences). Based on this validation, 13 new targets were outlined in this study.  相似文献   

9.
Large amounts of digital data must be analyzed and integrated to generate mineral potential maps, which can be used for exploration targeting. The quality of the mineral potential maps is dependent on the quality of the data used as inputs, with higher quality inputs producing higher quality outputs. In mineral exploration, particularly in regions with little to no exploration history, datasets are often incomplete at the scale of investigation with data missing due to incomplete mapping or the unavailability of data over certain areas. It is not always clear that datasets are incomplete, and this study examines how mineral potential mapping results may differ in this context. Different methods of mineral potential mapping provide different ways of dealing with analyzing and integrating incomplete data. This study examines the weights of evidence (WofE), evidential belief function and fuzzy logic methods of mineral potential mapping using incomplete data from the Carajás mineral province, Brazil to target for orogenic gold mineralization. Results demonstrate that WofE is the best one able to predict the location of known mineralization within the study area when either complete or unacknowledged incomplete data are used. It is suggested that this is due to the use of Bayes’ rule, which can account for “missing data.” The results indicate the effectiveness of WofE for mineral potential mapping with incomplete data.  相似文献   

10.
Weights of evidence (WofE) modeling usually is applied to map mineral potential in areas with large number of deposits/prospects. In this paper, WofE modeling is applied to a case study area measuring about 920 km2 with 12 known porphyry copper prospects. A pixel size of 100 m × 100 m was used in the spatial data analyses to represent in a raster-based GIS lateral extents of prospects and of geological features considered as spatial evidence. Predictor maps were created based on (a) estimates of studentized values of positive spatial association between prospects and spatial evidence; (b) proportion of number of prospects in zones where spatial evidence is present; and (c) geological interpretations of positive spatial association between prospects and spatial evidence. Uncertainty because of missing geochemical evidence is shown to have an influence on tests of assumption of conditional independence (CI) among predictor maps with respect to prospects. For the final predictive model, assumption of CI is rejected based on omnibus test but is accepted based on a new omnibus test. The final predictive model, which delineates 30% of study area as zones with potential for porphyry copper, has 83% success rate and 73% prediction rate. The results demonstrate plausibility of WofE modeling of mineral potential in large areas with small number of mineral prospects.  相似文献   

11.
A 3-D finite element model (Feflow) has been used for regional groundwater flow modelling of Upper Chaj Doab in Indus Basin, Pakistan. The thematic layers of soils, landuse, hydrology, infrastructure and climate were developed using Geographic Information System (GIS). The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient and estimation of the groundwater budget of the aquifer. Integration of GIS with groundwater modelling and satellite remote sensing capabilities has provided an efficient way of analysing and monitoring groundwater status and its associated land conditions. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater modelling, integration and presentation of image processing and modelling results.
The groundwater behaviour of the regional model shows a gradual decline in watertable from year 1999 onward. The persistent dry condition and high withdrawal rates play an influential role in lowering down the groundwater levels. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The results of the study provide useful information regarding the behaviour of aquifer in order to organize management schemes on local and regional basis to monitor future groundwater development in the area.  相似文献   

12.
Contamination of groundwater has become a major concern in recent years. Since testing of water quality of all domestic and irrigation wells within large watersheds is not economically feasible, one frequently used monitoring strategy is to develop contamination potential maps of groundwater, and then prioritize those wells located in the potentially highly contaminated areas for testing of contaminants. However, generation of contamination potential maps based on groundwater sensitivity and vulnerability is not an easy task due inherent uncertainty. Therefore, the overall goal of this research is to improve the methodology for the generation of contamination potential maps by using detailed landuse/pesticide and soil structure information in conjunction with selected parameters from the DRASTIC model. The specific objectives of this study are (i) to incorporate GIS, GPS, remote sensing and the fuzzy rule-based model to generate groundwater sensitivity maps, and (ii) compare the results of our new methodologies with the modified DRASTIC Index (DI) and field water quality data. In this study, three different models were developed (viz. DIfuzz, VIfuzz and VIfuzz_ped) and were compared to the DI. Once the preliminary fuzzy logic-based (DIfuzz) was generated using selected parameters from DI, the methodology was further refined through VIfuzz and VIfuzz_ped models that incorporated landuse/pesticide application and soil structure information, respectively. This study was conducted in Woodruff County of the Mississippi Delta region of Arkansas. Water quality data for 55 wells were used to evaluate the contamination potential maps. The sensitivity map generated by VIfuzz_ped with soil structure showed significantly better coincidence results when compared with the field data.  相似文献   

13.
奚旭  张新长  孙才志  鲍建腾 《地理科学》2017,37(9):1439-1448
建立地下水脆弱性评价的DRASTICH模型,辨析各个参数的不确定性特征,采用随机模拟方法同时对随机性参数和模糊性参数模拟赋值。分别对模糊性参数和脆弱性指数统计值设立具有概率分布意义的置信水平和百分位,得到多重地下水脆弱性的指数区间,在此基础上,分别绘制地下水脆弱性的保守分布图和冒险分布图,并对研究区地下水脆弱性分布状况进行分析。结果表明:以模糊区间形式表示的地下水脆弱性评价结果,能反映多种不确定因素综合影响下的地下水脆弱性客观实际情况,可提供更多可靠性方面的信息;以软区划方式制作地下水脆弱性分布图,保留了不确定性客观存在的事实,可给予决策者更多参考信息和调整余地;地下水脆弱性软区划分布图显示:保守分布的脆弱性程度总体要高于冒险分布,置信水平选择越高,冒险分布与保守分布的空间分布差异越接近,且与最大可能性分布情况越接近;研究区地下水脆弱性分布具有明显的空间集聚现象,地下水高脆弱性区域主要集聚在下辽河平原中部和南部地区,低脆弱性区域一般分布在下辽河平原东、西两侧地区。  相似文献   

14.
塔里木盆地南缘地下水脆弱性评价   总被引:22,自引:8,他引:14  
马金珠 《中国沙漠》2001,21(2):170-174
干旱区地下水脆弱性是地下水系统本身固有的不稳定属性,是系统结构、功能状态在人类活动干扰及气候变化等自然因素作用下具有的敏感性、易变性和弹性的综合反映。可以以河川径流中冰雪融水比重、地表径流入渗占地下水补给比例、地下水补给强度、地表水的引用率等十项指标(IRRUDQELTS)进行定量评价。通过对塔里木盆地南缘地下水脆弱性评价,表明该区属地下水严重脆弱区,其脆弱程度远大于地下水开发利用程度较高的河西走廊,其中又以民丰县、皮山县为极端脆弱。  相似文献   

15.
In this paper, we describe new fuzzy models for predictive mineral potential mapping: (1) a knowledge-driven fuzzy model that uses a logistic membership function for deriving fuzzy membership values of input evidential maps and (2) a data-driven model, which uses a piecewise linear function based on quantified spatial associations between a set of evidential evidence features and a set of known mineral deposits for deriving fuzzy membership values of input evidential maps. We also describe a graphical defuzzification procedure for the interpretation of output fuzzy favorability maps. The models are demonstrated for mapping base metal deposit potential in an area in the south-central part of the Aravalli metallogenic province in the state of Rajasthan, western India. The data-driven and knowledge-driven models described in this paper predict potentially mineralized zones, which occupy less than 10% of the study area and contain at least 83% of the model and validation base metal deposits. A cross-validation of the favorability map derived from using one of the models with the favorability map derived from using the other model indicates a remarkable similarity in their results. Both models therefore are useful for predicting favorable zones to guide further exploration work.  相似文献   

16.
This paper describes a GIS-based application of a radial basis functional link net (RBFLN) to map the potential of SEDEX-type base metal deposits in a study area in the Aravalli metallogenic province (western India). Available public domain geodata of the study area were processed to generate evidential maps, which subsequently were encoded and combined to derive a set of input feature vectors. A subset of feature vectors with known targets (i.e., either known mineralized or known barren locations) was extracted and divided into (a) a training data set and (b) a validation data set. A series of RBFLNs were trained to determine the network architecture and estimate parameters that mapped the maximum number of validation vectors correctly to their respective targets. The trained RBFLN that gave the best performance for the validation data set was used for processing all feature vectors. The output for each feature vector is a predictive value between 1 and 0, indicating the extent to which a feature vector belongs to either the mineralized or the barren class. These values were mapped to generate a predictive classification map, which was reclassified into a favorability map showing zones with high, moderate and low favorability for SEDEX-type base metal deposits in the study area. The method demarcates successfully high favorability zones, which occupy 6% of the study area and contain 94% of the known base metal deposits.  相似文献   

17.
Research activity and published literature on the reliability and vulnerability analysis of urban areas for disaster management has grown tremendously in the recent past. Population information has played the most important role during the entire disaster management process. In this article, population information was used as the evaluation criterion, and a fuzzy multiple-attribute decision-making (MADM) approach was used to support a vulnerability analysis of the Helsinki area for disaster management. A kernel density map was produced as a result that showed the vulnerable spatial locations in the event of a disaster. Model results were first validated against the original population information kernel density maps. In the second step, the model was validated by using fuzzy set accuracy assessment and the actual domain knowledge of the rescue experts. This is a novel approach to validation, which makes it possible to see how and if computer decision-making models compare to a real decision-making process in disaster management. The validation results showed that the fuzzy model has produced a reasonably accurate result. By using fuzzy modelling, the number of vulnerable areas was reduced to a reasonable scale and compares to the actual human assessment of these areas, which allows resources to be optimised during the rescue planning and operation.  相似文献   

18.

Any sustainable resource utilization plan requires evaluation of the present and future environmental impact. The present research focuses on future scenario generation of environmental vulnerability zones based on grey analytic hierarchy process (grey-AHP). Grey-AHP combines the advantages of grey clustering method and the classical analytic hierarchy process (AHP). Environmental vulnerability index (EVI) considers twenty-five natural, environmental and anthropogenic parameters, e.g. soil, geology, aspect, elevation, slope, rainfall, maximum and minimum temperature, normalized difference vegetation index, drainage density, groundwater recharge, groundwater level, groundwater potential, water yield, evapotranspiration, land use/land cover, soil moisture, sediment yield, water stress, water quality, storage capacity, land suitability, population density, road density and normalized difference built-up index. Nine futuristic parameters were used for EVI calculation from the Dynamic Conversion of Land-Use and its Effects, Model for Interdisciplinary Research on Climate 5 and Soil and Water Assessment Tool. The resulting maps were classified into three classes: “high”, “moderate” and “low”. The result shows that the upstream portion of the river basin comes under the high vulnerability zone for the years 2010 and 2030, 2050. The effectiveness of zonation approach was between “better” and “common” classes. Sensitivity analysis was performed for EVI. Field-based soil moisture point data were utilized for validation purpose. The resulting maps provide a guideline for planning of detailed hydrogeological studies.

  相似文献   

19.
Harris  J. R.  Wilkinson  L.  Heather  K.  Fumerton  S.  Bernier  M. A.  Ayer  J.  Dahn  R. 《Natural Resources Research》2001,10(2):91-124
A Geographic Information System (GIS) is used to prepare and process digital geoscience data in a variety of ways for producing gold prospectivity maps of the Swayze greenstone belt, Ontario, Canada. Data used to produce these maps include geologic, geochemical, geophysical, and remotely sensed (Landsat). A number of modeling methods are used and are grouped into data-driven (weights of evidence, logistic regression) and knowledge-driven (index and Boolean overlay) methods. The weights of evidence (WofE) technique compares the spatial association of known gold prospects with various indicators (evidence maps) of gold mineralization, to derive a set of weights used to produce the final gold prospectivity map. Logistic regression derives statistical information from evidence maps over each known gold prospect and the coefficients derived from regression analysis are used to weight each evidence map. The gold prospectivity map produced from the index overlay process uses a weighting scheme that is derived from input by the geologist, whereas the Boolean method uses equally weighted binary evidence maps.The resultant gold prospectivity maps are somewhat different in this study as the data comprising the evidence maps were processed purposely differently for each modeling method. Several areas of high gold potential, some of which are coincident with known gold prospects, are evident on the gold prospectivity maps produced using all modeling methods. The majority of these occur in mafic rocks within high strain zones, which is typical of many Archean greenstone belts.  相似文献   

20.
巴丹吉林沙漠地下水流场的宏观特征   总被引:1,自引:0,他引:1  
黑河流域下游盆地与周边地区的水力联系是当地生态建设的关键问题。巴丹吉林沙漠与黑河流域下游盆地存在长达180 km的交界线,由于水文地质调查程度低,其地下水的流场不清楚,黑河流域下游天然水均衡账本中存在不确定因素。针对这个问题,在已有水文地质调查基础上,开展了巴丹吉林沙漠区域尺度的水位调查和钻孔勘探,获得461个已知水位点和63个水位约束点,绘制出巴丹吉林沙漠浅层地下水一级近似等水位线图。结果表明:研究区地下水位具有东南高、西北低的特点,水力梯度0.6‰~4.0‰,沙漠东南部地区的湖泊对地下水流场具有扰动作用,但没有改变宏观的地下水流向;第四系松散砂层是巴丹吉林沙漠浅层地下水的主要含水层,根据现有钻孔和物探资料,第四系沉积物在沙漠腹地较厚、边缘较薄,覆盖厚度普遍超过100 m,联通了沙漠和黑河流域下游地区的地下水;巴丹吉林沙漠的地下水补给黑河下游的古日乃湖、额济纳旗平原和拐子湖地区,地下水侧向出境流量为(0.61~1.97)×108 m3·a-1,其中进入古日乃湖平原的流量达到(0.33~1.06)×108 m3·a-1。计算结果仍然受到一些不确定因素的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号