共查询到19条相似文献,搜索用时 109 毫秒
1.
从空间数据场的角度,借鉴高斯势函数发展了一种新的空间异常度度量指标。进而,提出了一种基于场论的空间异常探测方法。该方法通过空间聚类获得局部相关性较强的空间簇,并构建合理、稳定的空间邻近域。在此基础上,采用专题属性变化梯度修复策略减弱空间邻近域中潜在异常的影响,并利用空间异常度度量指标计算实体的异常度,从而探测空间异常。实验结果及实例证明了此方法的正确性。 相似文献
2.
空间异常探测旨在发现偏离普遍模式的小部分异常目标.对揭示地理现象潜在的发展变化规律有着重要意义.在现有的空间异常探测方法中,空间邻近域的确定直接影响探测结果的可靠性.为此,在顾及空间数据分布特征的前提下,利用人工神经网络机器学习的优势,发展了面向空间异常探测的BP神经网络结构和学习规则,提出了基于BP神经网络的空间异常探测方法,定义了基于BP神经网络的空间异常度概念,进而探测空间异常.最后,通过3组实际算例验证所提方法的可行性,并分析得出实验结论. 相似文献
3.
4.
5.
地理空间异常模式探测旨在发现地理空间中"与众不同"的实体或现象,为深入剖析地理现象或地理过程的特殊分布状况、变化或发展规律提供重要的理论依据和实践指导.随着异常探测应用需求的越来越广泛、深入,对异常探测的算法精度、智能化以及探测结果的可靠性要求越来越高.因而,一方面需要充分考虑地理空间数据自相关、异质性、多尺度等特性;... 相似文献
6.
采用时空同现模式分析方法挖掘多元犯罪事件之间的关联关系,可为犯罪事件防控问题提供科学指导。现有方法依赖人为设置的频繁度阈值,应用部门若缺乏先验知识则可能导致决策错误。因此,基于非参数统计思想,提出一种面向城市犯罪的时空同现模式显著性检验方法。首先通过重建每类犯罪事件的时空分布,构建多元犯罪事件分布独立的零模型;然后根据零模型下多元犯罪事件同现频率的试验分布,判别候选时空同现模式的显著性。最后设计具有预设模式的模拟数据实验验证该方法的有效性;在多个分析尺度(时空半径)下识别S市2016年13种犯罪事件间时空同现模式,并以时空同现模式{扰乱治安,盗窃电动自行车,扒窃}为例,结合公共设施空间分布,对该模式形成机理进行深入分析。结果表明:①该方法充分顾及了单元犯罪事件自相关特征的影响,能够有效识别具有统计特性的时空同现模式;②犯罪事件时空同现模式随分析尺度的变化而存在差异;③具有相似建成环境和社会环境的犯罪事件容易形成时空同现模式。 相似文献
7.
一种顾及邻近域内实体间距离的空间异常检测新方法 总被引:2,自引:1,他引:2
空间异常检测已成为空间数据挖掘和知识发现的一个重要研究内容.空间异常蕴含着许多意想不到的知识,现有的空间异常检测方法大多依据空间邻近域的非空间属性差异来计算偏离因子,忽略了邻近域内空间实体间距离的影响.本文首先讨论了空间邻近域内实体间距离对空间异常检测的影响,在此基础上,提出了一种顾及邻近域内实体间距离的空间异常度量方法--SOM法,并分析了它的复杂度.由于该方法是利用实体非空间属性的加权内插值与实测值的差值作为度量空间异常程度的参数,从而顾及了邻近域内所有实体相互间距离对非空间属性偏离的影响,并且克服了现有检测方法在不均匀分布空间实体集内寻找空间异常的缺陷.最后,通过一个实际算例验证了所提方法的可行性和正确性. 相似文献
8.
为了使得空间聚类分析更加适应实际情况,发展了一种同时顾及空间障碍约束与空间位置邻近的空间聚类方法。该方法采用Delaunay三角网描述实体间的邻近关系,并且不依赖用户指定参数。实验验证了本方法的有效性与优越性。 相似文献
9.
10.
11.
空间同位模式挖掘对于揭示地理现象间的共生、依赖规律具有重要价值。然而,空间同位模式挖掘中参数阈值缺乏先验知识,若设置不合理,挖掘结果中会遗漏重要的模式或包含冗余的、甚至错误的模式。为此,本文提出了一种基于模式重建的显著空间同位模式多尺度挖掘方法。首先,定义了互邻近距离指标,该指标可用来确定距离阈值的有效取值范围。进而,以模式重建为基础构建零模型,借助统计检验的方法来发现显著的空间同位模式,从而避免了兴趣度阈值的设置。最后,对空间同位模式进行多尺度挖掘,并引入生存期的概念对同位模式多尺度挖掘结果进行有效性评价。试验结果表明:本文方法可有效降低算法参数设置的主观性,从而提升空间同位模式挖掘结果的准确性和稳健性。 相似文献
12.
局部空间同位模式挖掘旨在揭示多类地理事件在异质环境下的共生共存规律。已有的方法一方面需要模式筛选的频繁度阈值参数,另一方面需要区域探测的划分参数或聚类参数,参数的不合理设置会导致挖掘结果不可靠甚至出现错误。因此,提出了一种显著局部空间同位模式自动探测方法。首先,基于空间统计思想,采用非参数模式重建方法对空间同位模式进行显著性判别,将全局非显著空间同位模式作为进一步局部探测的候选模式;然后,借助自适应空间聚类方法提取每个候选模式的热点区域;最后,通过不断生长并测试每个热点区域,界定显著局部空间同位模式的有效边界,即空间影响域。通过实验与比较发现,该方法能够客观且有效判别空间同位模式的显著性,并且自适应地提取局部同位模式的空间分布结构,降低了现有方法参数设置的主观性。 相似文献
13.
道路网数据中微观结构的识别对于多尺度路网建模、步行导航等至关重要。复杂道路交叉口是重要的道路微观结构之一,针对目前道路复杂交叉口基于几何形状描述与图形匹配识别方法存在的不足,从复杂交叉口识别与化简的角度出发,提出了一种利用路段分类进行复杂道路交叉口识别与化简的方法。该方法首先通过点密度聚类的方法对道路交叉口进行定位,然后利用路段的规模、形状和属性等特征构建特征空间,将交叉口的识别作为一种区分主干路段与辅助路段的两类分类问题,利用支持向量机的方法对交叉口区域内的路段进行分类,从而完成交叉口的识别与化简。利用开放街道地图(Open Street Map)数据进行实验,结果表明,该方法能够有效地识别道路交叉口。 相似文献
14.
保持空间分布特征的群点化简方法 总被引:27,自引:5,他引:27
群点目标隐含的空间结构化信息是空间分布分析、地图综合感兴趣的内容。对群点目标分布的信息内容区分为存在性、度量结构与拓扑结构,在Delaunay三角网及其对偶Voronoi图模型上对工量结构定义4个在量;分布范围、分布密度、分布中心及分布轴线,顾及视觉识别Gestalt邻近原则,运用三角形“剥皮”法,确立了非凸多边形所表达的群点分布范围,运用图像灰度表达群点分布密度并通过图像处理方法提取分布中心。建立了Voronoi图动态重建进行群点化简的方法,该方法通过边界点和内部点的分开处理,较好地保持了4个空间分布特征。 相似文献
15.
17.
Knox检验是一种常用的城市犯罪时空交互模式分析方法,但其阈值需要人为指定,这种主观的阈值确定方法存在一定随意性,因此需探索更为合理的阈值确定方法。提出利用点对平均最邻近距离作为Knox检验空间阈值的确定方法,并通过城市入室盗窃、盗窃电动车和扒窃3类事件进行实验验证。结果表明,与常见的几种阈值确定方法相比,所提方法检测出了最大数量的显著性交互事件对数,能更加充分地了解事件的真实时空交互模式,为基于Knox检验的事件时空聚集模式分析提供了一种有效的空间阈值确定手段。 相似文献
18.