首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Every three years the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets and satellites. Also presented are revised tables giving their sizes and shapes.  相似文献   

2.
Every three years the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. Also presented are revised tables giving their sizes and shapes. Changes since the previous report are summarized in the Appendix.Merton Davies, The original chairman of this Working Group, died on April 17, 2001.  相似文献   

3.
Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. This report introduces a system of cartographic coordinates for asteroids and comets. A topographic reference surface for Mars is recommended. Tables for the rotational elements of the planets and satellites and size and shape of the planets and satellites are not included, since there were no changes to the values. They are available in the previous report (Celest. Mech. Dyn. Astron., 82, 83–110, 2002), a version of which is also available on a web site.  相似文献   

4.
Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report introduces improved values for the pole and rotation rate of Pluto, Charon, and Phoebe, the pole of Jupiter, the sizes and shapes of Saturn satellites and Charon, and the poles, rotation rates, and sizes of some minor planets and comets. A high precision realization for the pole and rotation rate of the Moon is provided. The expression for the Sun’s rotation has been changed to be consistent with the planets and to account for light travel time  相似文献   

5.
Tables of lunar physical libration defining the analytical dependence upon the parameters of the lunar gravitational field are presented. The tables are obtained on the framework of the main problem in lunar libration by integration of the Hamilton equations reduced to the harmonic oscillator equations.The variables of physical libration have been obtained in the form of Poisson series. The distinguishing feature of the tables is that these series are the analytical extension of semianalytical solution computed for a number of dynamical parameters LURE2.A comparison with the Eckhardt's solution is briefly presented. The previously revealed disagreement of the mean inclination of lunar equator to ecliptic with that in Eckhardt's solution 500 has been maintained.  相似文献   

6.
We present a set of gas-phase Planck mean and Rosseland mean opacity tables applicable for simulations of star and planet formation, stellar evolution and disc modelling at various metallicities in hydrogen-rich environments. The tables are calculated for gas temperatures between 1000 and 10 000 K and total hydrogen number densities between 102 and  1017 cm−3  . The carbon-to-oxygen ratio is varied from 0.43 to well above 2.0, the nitrogen-to-oxygen ratio between 0.14 and 100.0. The tables are calculated for a range of metallicities down to  [M/H]'= log  N M/ N H=−7.0  . We demonstrate how the mean opacities and the abundances of the opacity species vary with C/O, N/O and  [M/H]'  . We use the element abundances from Grevesse et al., and we provide additional tables for the oxygen abundance value from Caffau et al. All tables will be available online at http://star-www.st-and.ac.uk/~ch80/datasources.html .  相似文献   

7.
8.
This paper presents the reflections of the Working Group of which the tasks were to examine the non-rigid Earth nutation theory. To this aim, six different levels have been identified: Level 1 concerns the input model (giving profiles of the Earth's density and theological properties) for the calculation of the Earth's transfer function of Level 2; Level 2 concerns the integration inside the Earth in order to obtain the Earth's transfer function for the nutations at different frequencies; Level 3 concerns the rigid Earth nutations; Level 4 examines the convolution (products in the frequency domain) between the Earth's nutation transfer function obtained in Level 2, and the rigid Earth nutation (obtained in Level 3). This is for an Earth without ocean and atmosphere; Level 5 concerns the effects of the atmosphere and the oceans on the precession, obliquity rate, and nutations; Level 6 concerns the comparison with the VLBI observations, of the theoretical results obtained in Level 4, corrected for the effects obtained in Level 5.Each level is discussed at the state of the art of the developments.  相似文献   

9.
In 2007, the M-type binary Asteroid 22 Kalliope reached one of its annual equinoxes. As a consequence, the orbit plane of its small moon, Linus, was aligned closely to the Sun's line of sight, giving rise to a mutual eclipse season. A dedicated international campaign of photometric observations, based on amateur-professional collaboration, was organized and coordinated by the IMCCE in order to catch several of these events. The set of the compiled observations is released in this work. We developed a relevant model of these events, including a topographic shape model of Kalliope refined in the present work, the orbit solution of Linus as well as the photometric effect of the shadow of one component falling on the other. By fitting this model to the only two full recorded events, we derived a new estimation of the equivalent diameter of Kalliope of 166.2±2.8 km, 8% smaller than its IRAS diameter. As to the diameter of Linus, considered as purely spherical, it is estimated to 28±2 km. This substantial “shortening” of Kalliope, gives a bulk density of 3.35±0.33 g/cm3, significantly higher than past determinations but more consistent with its taxonomic type. Some constraints can be inferred on the composition.  相似文献   

10.
We recorded 101 new rotation lightcurves of five Koronis family members, and then combined the new observations with previous data to determine the objects' sidereal rotation periods, spin vector orientations, and model shape solutions. The observing program was tailored specifically for spin vector analyses by determining single-apparition Lumme–Bowell solar phase coefficients, and by measuring synodic rotation periods precisely enough to unambiguously count the rotations between two consecutive oppositions, which is a prerequisite for identifying the correct sidereal period. The new data make possible first pole and shape determinations for (263) Dresda, (462) Eriphyla, and (1289) Kutaïssi, and they improve the models for (277) Elvira and (534) Nassovia, two objects previously studied by Slivan et al. [Slivan, S.M., Binzel, R.P., Crespo da Silva, L.D., Kaasalainen, M., Lyndaker, M.M., Kr?o, M., 2003. Icarus 162, 285–307]. Our results increase the number of Koronis family spin vectors reported in the literature to fourteen, a sample which now includes the seven largest family members. The spin properties of Eriphyla (rotation period , spin vector obliquity ε=51°) and Kutaïssi (P=3.62 h, ε=165°) are consistent with the markedly nonrandom distribution reported by Slivan [Slivan, S.M., 2002. Nature 419, 49–51], and explained by Vokrouhlický et al. [Vokrouhlický, D., Nesvorný, D., Bottke, W.F., 2003. Nature 425, 147–151] as the result of the effects of thermal “YORP” torques combined with solar and planetary gravitational torques. Dresda (P=16.81 h, ε=16°) is the first prograde Koronis member whose spin obliquity and spin rate significantly differ from the clustered spin properties previously found for other prograde Koronis members; nevertheless, its spin vector is consistent with several of the spin evolution possibilities that were identified in the YORP modeling.  相似文献   

11.
Explorer 1, 1958α, ths first U.S. artificial satellite, was launched on 1 February 1958 and remained in orbit for 12 years. In this paper theoretical curves have been fitted to the values of inclination, giving three values of the average atmospheric rotation rate at heights of 350–400 km, and latitudes 0–20°:
  相似文献   

12.
We present observations of the Centaur (32532) 2001 PT13 taken between September 2000 and December 2000. A multi-wavelength lightcurve was assembled from V-, R- and J-band photometry measurements. Analysis of the lightcurve indicates that there are two peaks of slightly different brightness, a rotation period of 0.34741±0.00005 day, and a maximum photometric range of 0.18 mag. We obtained VRJHK colors (V-R=0.50±0.01, V-J=1.69±0.02, V-H=2.19±0.04, and V-K=2.30±0.04) that are consistent with the grey KBO/Centaur population. The V-R color shows no variation as a function of rotational phase; however, we cannot exclude the possibility that rotational variations are present in the R-J color. Assuming a 4% albedo, we estimate that 2001 PT13 has an effective diameter of 90 km and a minimum axial ratio a/b of 1.18. We find no evidence of a coma and place an upper limit of 15 g s−1 on the dust production rate.  相似文献   

13.
This article uses fractal and correlation analysis of solar radio emission for determining the solar coronal rotation. It is clear from this analysis that radio emissions are modulated by the solar rotation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In this paper analytical expressions are derived for the temporal variations ofJ 2 andJ 22 due to the tides of the solid Earth, taking into account only the deformation of the mantle, and employing a procedure already used by the authors in their Hamiltonian theory of the Earth's rotation, which obtain the necessary parameters in a direct way by integration of those provided by a selected model of Earth interior.Numerical tables giving the periodic variation of coefficients are given, as well as a new prediction for UT1. For J 2 and J 22 the amplitudes reach such a magnitude that both two variations should not be ignored in studies involving the analysis of highly precise satellite tracking data. Moreover, the possibility of improving our knowledge of the value of those harmonic coefficients in only a more exact digit appears as to be strongly dependent on the limitations in the theoretical modeling of the variations of the inertia tensor due to solid tides.  相似文献   

15.
According to A.A. Khentov Venus' rotation is in the quasi-stationary state as a result of the balance interaction of the solar tidal torque with the aerodynamical torque of the rotating Venus' atmosphere. In case of the nonconservative forces are negligible and the solar attraction is the stabilizing factor, the rotation of the rigid Venus may be assumed as the first approximation. The theory of the rotation of the rigid Venus in the coordinates,, had been constructed. It have been found that Venus rotates almost uniformly and the libration harmonics are negligible.  相似文献   

16.
We calculate the direction of the rotational angular momentum vector,M, of comet 19P/Borrelly based on rotational lightcurve data from 2000, groundbased imaging of the coma during the Deep Space 1encounter, and the basic near-nucleus coma morphology as revealed by the Deep Space 1 spacecraft. For the most likely direction, we derivea family of solutions (with center at RA = 221°, Dec = -7°) if the direction of M is towards the sunward hemisphere during the Deep Space 1 encounter, whereas if the rotation is of opposite sense, the diametrically opposite family of solutions (with center at RA = 41°, Dec = 7°) would result. We argue that the coma morphology in September 2001 is consistent with the nucleus being a principal axis rotator or one observationally indistinguishable from it. Therefore, for all practical purposes, the direction of the rotational angular momentum vector coincides with the spin axis. We also discuss why the determination of the spin axis direction based on observations from the last apparition is in disagreement with the current result.  相似文献   

17.
The final Deep Space 1 (DS1) mission target, comet 19P/Borrelly, was observedfrom July 28–August 1, 2000 at the CTIO-1.5 m telescope in the R filter. Theobserved lightcurve has a large peak to peak variation between 0.84 mag and1.0 mag. A period of 26.0 ± 1 hr (assuming a double-peaked lightcurve)was found using all five nights. This is in good agreement with the period of25.02 ± 0.5 hr quoted by Lamy et al. (1998) using only 6 points ofHST data and is also consistent with HST data taken around the DS1 encountertime by Weaver et al. (2002).Using the mean magnitude R = 20.8 mag and assuming a 4% albedo, we derivean effective nuclear radius of 2.6 km. The large lightcurve amplitude translates toa long to intermediate axial ratio a/b ≥ 2.2, in excellent agreement with theHST result of a/b ≥ 2.4 (Lamy et al., 1998) and with DS1 images (Soderblom et al., 2002).  相似文献   

18.
The influence of the basic rotation on anisotropic and inhomogeneous turbulence is discussed in the context of differential rotation theory. An improved representation for the original turbulence leads to a Λ‐effect which complies with the results of 3D numerical simulations. The resulting rotation law and meridional flow agree well with both the surface observations (∂Ω/∂r < 0 and meridional flow towards the poles) and with the findings of helioseismology. The computed equatorward flow at the bottom of convection zone has an amplitude of about 10 m/s and may be significant for the solar dynamo. The depth of the meridional flow penetration into the radiative zone is proportional to ν0.5core, where νcore is the viscosity beneath the convection zone. The penetration is very small if the tachocline is laminar. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Helioseismic determination of the solar gravitational quadrupole moment   总被引:1,自引:0,他引:1  
One of the most well-known tests of general relativity (GR) results from combining measurements of the anomalous precession of the orbit of Mercury with a determination of the gravitational quadrupole moment of the Sun J 2. The latter can be done by inference from an integral relation between J 2 and the solar internal rotation. New observational data of high quality obtained from the Solar Heliospheric Satellite ( SoHO ) and from the Global Oscillations Network Group (GONG) allow the determination of the internal rotation velocity of the Sun as a function of radius and latitude with unprecedented spatial resolution and accuracy. As a consequence, a number of global properties of the Sun can also be determined with much higher accuracy, notably the gravitational quadrupole moment of the Sun. The anomalous precession of the orbit of Mercury is primarily due to GR effects, but there are classical corrections, the largest of which is that due to J 2. It is shown here that the data are currently consistent with the predictions of GR.  相似文献   

20.
Wink  J.  Bockelée-Morvan  D.  Despois  D.  Colom  P.  Biver  N.  Crovisier  J.  Gérard  E.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Jorda  L. 《Earth, Moon, and Planets》1997,78(1-3):63-63
Comet C/1995 O1 (Hale-Bopp) has been observed on October 5 and 25, 1996 and from March 6 to March 22, 1997 with the Institut de Radioastronomie Millimétrique (IRAM) interferometer at Plateau de Bure (France). Millimetre lines of HCN,HNC, CO, H2CO, CH3OH, H2S, CS and SO were mapped with spatial resolutions of 1.5–3.5 arc sec. These observations allow us to investigate whether these species are released by the nucleus or produced in the coma by extended sources or photo-processes. The brightness distribution of the HCN J (1-0) line is consistent with release from the nucleus. The HNC J (1-0) distribution deviates from that of HCN in the innermost coma, and indicates production of HNC in the coma. This is in agreement with the heliocentric variation of the HNC/HCN ratio (Biver et al., 1997, Science 275, 1915; Irvine et al., 1998, this issue) and formation by chemical reactions (Rodgers and Charnley, 1998, Ap. J. 501, L227; Irvine et al., 1998, Nature 393, 547). There is clear evidence that SO is a photo dissociation product. The observations also confirm that H2CO is mainly produced by an extended source, as first evidenced in comet P/Halley. The contribution of the nucleus to the total H2CO production rate does not exceed 6%. The molecular lines have also been monitored hourly with the five antennas of the interferometer in single-dish mode. The line velocity shifts show aperiodic modulation linked to the nucleus rotation. The amplitude of the modulation differs from one species to another. The periodic modulation seen for the CO J (2-1) line on March 11 suggests that a significant fraction of CO is released continuously night and day by an active source situated at equatorial latitudes on the nucleus surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

Feb 1958 to mid 19601.5 rev/day
Mid 1960 to Dec 19671.2 rev/day
Jan 1968 to Mar 19701.3 rev/day
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号