首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sets of L-matrices of the second, fourth and eighth orders are constructed axiomatically. The defining relations are taken from the regularization of motion equations for Keplerian problem. In particular, the Levi-Civita matrix and KS-matrix are L-matrices of second and fourth order, respectively. A theorem on the ranks of L-transformations of different orders is proved. The notion of L-similarity transformation is introduced, certain sets of L-matrices are constructed, and their classification is given. An application of fourth order L-matrices for N-body problem regularization is given. A method of correction for regular coordinates in the Runge–Kutta–Fehlberg integration method for regular motion equations of a perturbed two-body problem is suggested. Comparison is given for the results of numerical integration in the problem of defining the orbit of a satellite, with and without the above correction method. The comparison is carried out with respect to the number of calls to the subroutine evaluating the perturbational accelerations vector. The results of integration using the correction turn out to be in a favorable position.  相似文献   

2.
The parameters of L matrices are applied to the numerical integration of regular equations describing the motion of minor bodies in the Solar System. The problem of the optimal choice of the regularizing change of variables is formulated in the context of the numerical integration of the equations of motion using the Runge–Kutta–Fehlberg method. Arbitrary perturbations are taken into account. This problem is completely solved in the case of planar motion. The solution of the optimization problem reduces the amount of computations needed to determine the vector of perturbing accelerations. Results of numerical integrations are given.  相似文献   

3.
The dynamics of near-Earth asteroids near mean motion resonances with the Earth or other planets is considered. The probability domains of the motion of some near-Earth asteroids close to low-order resonances are presented. The investigations have been carried out by means of a numerical integration of differential equations, taking into account the perturbations from the major planets and the Moon. For each investigated object an ensemble of 100 test particles with orbital elements nearby those of the nominal orbit has been constructed and its evolution has been retraced over the time interval (–3000, +3000 years). The initial set of orbits has been generated on the basis of probable variations of the initial orbital elements obtained from the least square analysis of observations.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
The idea of using various L-matrices in numerical integration of the regular equations, which describe the motion of small bodies of the Solar System, is developed. The problem of the optimal position of the radius vector and velocity at numerical integration in the KS-coordinate system is posed. The solution of this problem, which reduces the number of calculations of the vector of perturbing accelerations, is given. The transformation providing this optimal solution is suggested, and the results of numerical integration are given.  相似文献   

5.
The discontinuous behavior of coordinates of planets and the Moon and their derivatives, which are determined from their modern ephemerides, at the boundaries of adjacent interpolation intervals is illustrated using the example of the DE436 ephemerides. The numerical integration of the equations of motion of two asteroids demonstrates that the integration accuracy increases by several orders of magnitude if the step of numerical integration is matched to the boundaries of ephemeris interpolation intervals. In addition, an algorithm for ephemeris smoothing at the boundaries of interpolation intervals is developed and applied in order to eliminate the jumps of coordinates and their first-order derivatives emerging in extended- and quadprecision calculations. This algorithm allows one to remove the jumps of coordinates and their derivatives up to any given order. It is demonstrated that the use of ephemerides smoothed to the first-order derivatives in quad-precision calculations increases the accuracy of numerical integration by ~10 orders of magnitude.  相似文献   

6.
New methods are proposed for solving equations of motion of celestial bodies. The methods are based on the use of superosculating orbits with second- and third-order tangency to the trajectory of the real motion of a body. The construction of these orbits is related to the concept of a fictitious attracting center, whose mass varies in accordance with the first Meshchersky law. In the original reference methods, the perturbed trajectory is represented by a sequence of small arcs of superosculating orbits. The order of accuracy of the reference methods coincides with the order of tangency of the superosculating orbit used in calculations. Using Runge's rule and Richardson's extrapolation scheme leads to the methods of higher order. The efficiency of the new methods in comparison with the numerical integration of equations of motion based on the well-known fourth- and seventh-order Runge–Kutta–Fehlberg methods is illustrated by examples of the calculation of perturbed orbits of some asteroids.  相似文献   

7.
We obtain the size and orbital distributions of near-Earth asteroids (NEAs) that are expected to be in the 1 : 1 mean motion resonance with the Earth in a steady state scenario. We predict that the number of such objects with absolute magnitudes H<18 and H<22 is 0.65±0.12 and 16.3±3.0, respectively. We also map the distribution in the sky of these Earth coorbital NEAs and conclude that these objects are not easily observed as they are distributed over a large sky area and spend most of their time away from opposition where most of them are too faint to be detected.  相似文献   

8.
用相对论加速喷流模型对48个具有视超光速的射电源进行了分析,结果不但支持流行的喷流模型而且说明加速模型是合理的。  相似文献   

9.
天文动力学方程数值积分中的一种有效变步法   总被引:1,自引:0,他引:1  
刘承志  崔斗星 《天文学报》2002,43(4):387-390
利用积分曲线的曲率控制步长的技巧,使天文动力学方程数值解法的精度和速度有较大提高,这种方法适用于天体精密定轨以及一些精度要求高的常微分方程初值问题的数值积分。  相似文献   

10.
We have developed a computer code that solves numerically the 1D heat transport equation for small planetary bodies consisting of silicate material and heated by 26Al. At the same time the bodies' accretion (with a size from 1 km—or smaller—to several hundred kilometers) is taken into account as radial growth. We find that the consideration of accretion is inevitable as it affects the thermal evolution resulting from heating by radioisotopes. Significant changes in thermal behavior are shown to occur in comparison with calculations that assume instantaneous accretion.  相似文献   

11.
位于活动区磁中性线上方的暗条,随着活动区光球物质运动和磁结构演化,其上升运动规律呈多样性。根据暗条上升运动的特征,一般将其分为两类:第一类为缓慢上升(速度为Km.s^-1量级),在暗条上升过程中,亚电场中速是子能量为几十~100LeV量级(E〈ED,E为暗条表面电场强度,ED为经典Duecier场);第二类为快速上升(速度为几十~几百Km.s^-1量级)因暗条快速上升在其下方形成X型中性点,暗条加  相似文献   

12.
A simple method for numerical integration of the equations of motion of small bodies of the Solar System is proposed, which is especially efficient in studying the orbits with small perihelion distances. The evolution of orbits of 121 numbered asteroids with perihelion distances q < 1.2 AU is investigated over the time interval of years 2000–2100 with allowance made for the gravitational influence of nine planets and three largest asteroids. The circumstances of close encounters of asteroids with the Earth and other terrestrial planets are presented.  相似文献   

13.
As proposed by TREDER , possible consequences of a unitary field theory may be described phenomenologically by additional cross terms in EINSTEIN 's equations. The violation of the weak principle of equivalence and potential observable effects are discussed in deriving hydrodynamic EIH equations. Conclusions on gravitational instabilities follow in the quasistatic approximation.  相似文献   

14.
Mainly, the author focuses on Baumgarte's method and its applications in satellite, asteroid, stellar and planetary problems. In the paper arguments are given for the use of energy relations for stabilization in the elliptical two-body problem. Stabilizing properties of Baumgarte's equations and others are discussed. A simple approach is proposed for stabilizing the equations of almost circular motion. By using Baumgarte's technique, the author derives stabilized equations of perturbed restricted three-body problem. It is shown experimentally that stabilization in the problems mentioned above can raise the accuracy of numerical integration by several orders.  相似文献   

15.
叙述了与Astrod工程有关的相对论天体力学基础内容。包括相对论天体力学、广义相对论基本原理、PPN方法体系、PPN多体问题、PPN二体问题。高阶PN二体问题等  相似文献   

16.
It is shown that the equation of motion Du j/Ds = (e/mc 2)F ji u i , a natural generalization to the curved spacetime of the Heaviside-Lorentz law of ponderomotive force, is equivalent to the metric independent and covariant Van Dantzig's equations of motion dx j [jpi] = 0 or L v p i = 0, where p i is the conjugate momentum 4-vector and v a vector determined by the condition p i v i, only with respect to holonomic coordinates. With respect to an anholonomic system, the Heaviside-Lorentz equation is a particular case of the VD equations valid for a privileged class of anholonomic frames, those consisting of orthogonal unit vectors.  相似文献   

17.
For numerical integration of the geocentric equations of motion of Earth satellites in the general relativity framework one may choose now between rather simple equations involving in their relativistic dynamical part only the Earth-induced terms and very complicated equations taking into account the relativistic third-body action. However, it is possible quite easily to take into account the relativistic indirect third-body perturbations and to neglect much lesser direct third-body perturbations. Such approach is based on the use of the Newtonian third-body perturbations in geocentric variables with expressing them in the relativistic manner in terms of the barycentric arguments. Together with it, to extend the known results for the spheroid model of the Earth, the Earth-induced terms are treated in great detail by including the non-spin part of the Earth vector-potential and the Earth triaxial non-sphericity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
约束条件和数值积分   总被引:2,自引:1,他引:2  
伍歆  黄天衣 《天文学报》2004,45(3):310-319
自治的哈密顿系统存在约束条件,例如能量积分或广义相对论中的4速度大小为常数,它能否在数值积分过程中始终满足将直接影响数值稳定性.在牛顿力学中哈密顿系统的动能一般为椭圆型,直接运用约束条件对方程进行降阶存在开平方判断正负号的困难,导致应用高精度的经典数值积分器时能量存在耗散.然而相对论力学的度规为双曲型,利用约束条件有可能实行方程降阶.在时空具有一定对称性的情况下,能够找到整个时空的一个全局变换使变换后的度规的主对角线某一元素为零,于是从约束方程中不需开平方能够解出某一动量,顺利实现运动方程的降阶.相对论力学中另一个可以降阶的模型是Mixmaster宇宙模型.数值实验表明将经典算法用于降阶后的运动方程能够严格地满足约束,但不一定能保持辛结构。  相似文献   

19.
We apply the spectral formulation of the Nekhoroshev theorem to investigate the long-term stability of real main belt asteroids. We find numerical indication that some asteroids are in the so-called Nekhoroshev stability regime, that is they are on chaotic orbits but their motion is stable over very long times. We have analyzed the motion of bodies in different regions of the belt, to assess the sensitivity of our method. We found that it allows us to clearly discriminate between different dynamical regimes, such as the one described by the Nekhoroshev stability, the one well described by the KAM theory, and the unstable chaotic regime in which diffusion in phase space can be detected over time spans much shorter than the age of the solar system.  相似文献   

20.
It is generally accepted that Main-Belt asteroids (MBAs) and nuclei of no longer active comets are the sources that replenish the Amor, Apollo, and Aten groups of asteroids, i.e., Earth-approaching asteroids (EAAs). Investigations of the dynamics of EAAs and numerical modeling of their orbital motion have shown that the so-called resonance mechanism of the replenishment of the EAA population with objects from the Main Belt is quite sufficient for its maintenance. In this paper, we compare the physical properties of EAAs and MBAs (and, partly, cometary nuclei) in an effort to gain an understanding of whether the physical properties of EAAs can tell us anything about their origins. The principal result of the performed analysis is the conclusion that the small dimensions of EAAs; their MBA-identical set of taxonomic classes; the identical mineralogy and preponderance of differentiated compositions among EAAs; and their, on average, MBA-identical shape, rotation, optical properties, and surface structure are all convincing proof that the Main Belt is the dominant source of the replenishment of the EAA population and that the share of cometary-origin EAAs does not exceed 10%. The most likely candidates for cometary-origin objects among EAAs are 2100 Ra-Shalom, 2101 Adonis, 2201 Oljato, 2212 Hephaistos, 3200 Phaethon, 3552 Don Quixote, and 4015 Wilson–Harrington.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号