首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Khlystova 《Solar physics》2013,284(2):343-361
The dynamics of horizontal plasma flows during the first hours of the emergence of active region magnetic flux in the solar photosphere have been analyzed using SOHO/MDI data. Four active regions emerging near the solar limb have been considered. It has been found that extended regions of Doppler velocities with different signs are formed in the first hours of the magnetic flux emergence in the horizontal velocity field. The flows observed are directly connected with the emerging magnetic flux; they form at the beginning of the emergence of active regions and are present for a few hours. The Doppler velocities of flows observed increase gradually and reach their peak values 4?–?12 hours after the start of the magnetic flux emergence. The peak values of the mean (inside the ±?500 m?s?1 isolines) and maximum Doppler velocities are 800?–?970 m?s?1 and 1410?–?1700 m?s?1, respectively. The Doppler velocities observed substantially exceed the separation velocities of the photospheric magnetic flux outer boundaries. The asymmetry was detected between velocity structures of leading and following polarities. Doppler velocity structures located in a region of leading magnetic polarity are more powerful and exist longer than those in regions of following polarity. The Doppler velocity asymmetry between the velocity structures of opposite sign reaches its peak values soon after the emergence begins and then gradually drops within 7?–?12 hours. The peak values of asymmetry for the mean and maximal Doppler velocities reach 240?–?460 m?s?1 and 710?–?940 m?s?1, respectively. An interpretation of the observable flow of photospheric plasma is given.  相似文献   

2.
The X1- and X2- or higher class ?ares in solar cycles 21, 22, and 23 from 1986 to 2008 have been analyzed statistically in this paper. It is found in the statistical study that the number of the X1-class ?ares accounted for 52.71% of total X- and higher class ?ares, while, the number of the X2- and higher class ?ares accounted for 47.29% of total X- and higher class ?ares. No matter whether the X1- and X2- or higher class ?ares, most of them occured in the descending phases of the solar cycles. Moreover, the weaker the intensity of the solar cycle, the higher the ratio of the ?ares occurred in the descending phase of the solar cycle, and the stronger the intensity of solar ?ares, the higher the ratio of the ?ares occurred in the descending phases of the solar cycles. In addition, the phase difference between the peak of the smoothed monthly mean number of sunspots and that of the X-class ?ares has been calculated, which shows that the smoothed monthly mean number of the X1-class ?ares had a very noticeable time advance of 1 month with respect to that of sunspots in the cycles 21 and 22, but there was a time lag of 13 months in the cycle 23, while, for the X2- and higher class ?ares, there was a time lag of 9 months in the cycle 21, but a one-month time advance existed in the cycle 22, and again a time lag of 32 months appeared in the cycle 23.  相似文献   

3.
We find clear evidence for typical chromospheric evaporation associated with small transient brightenings, using the data from the X-ray Telescope (XRT) onboard Hinode. We found 13 events, each having a pair of evaporation upflows arising almost symmetrically from both foot points of a magnetic loop. These facts strongly support the standard flare model based on the magnetic reconnection. The apparent upflow velocities of three of the events are ≈?500?km?s?1, while those of the other events are ≈?100?km?s?1. This is the first clear direct detection of evaporating upflow motion in soft X-ray images from Hinode/XRT; such images were obtained with high cadence (≈?60?s) and high spatial resolution (1?arcsec).  相似文献   

4.
《New Astronomy Reviews》2000,44(7-9):427-429
Recently, reliable mass estimates for the central black holes in AGN became feasible due to emission-line reverberation techniques. Using this method as a calibrator, it is possible to determine black hole masses for a wide range of AGN, in particular NLS1s. Do NLS1s have smaller black holes than ordinary Seyfert 1 galaxies? Are their black holes smaller compared to the sizes of their host galaxies? Do they have larger L/M ratios? Do NLS1s have hotter accretion disks? I confront these questions with accretion disk theory and with the data, showing that the above may well be the case.  相似文献   

5.
We statistically analyzed the kinematical evolution and wave pulse characteristics of 60 strong large-scale EUV wave events that occurred during January 2007 to February 2011 with the STEREO twin spacecraft. For the start velocity, the arithmetic mean is 312±115 km?s?1 (within a range of 100?–?630 km?s?1). For the mean (linear) velocity, the arithmetic mean is 254±76 km?s?1 (within a range of 130?–?470 km?s?1). 52 % of all waves under study show a distinct deceleration during their propagation (a≤?50 m?s?2), the other 48 % are consistent with a constant speed within the uncertainties (?50≤a≤50 m?s?2). The start velocity and the acceleration are strongly anticorrelated with c≈?0.8, i.e. initially faster events undergo stronger deceleration than slower events. The (smooth) transition between constant propagation for slow events and deceleration in faster events occurs at an EUV wave start-velocity of v≈230 km?s?1, which corresponds well to the fast-mode speed in the quiet corona. These findings provide strong evidence that the EUV waves under study are indeed large-amplitude fast-mode MHD waves. This interpretation is also supported by the correlations obtained between the peak velocity and the peak amplitude, impulsiveness, and build-up time of the disturbance. We obtained the following association rates of EUV wave events with other solar phenomena: 95 % are associated with a coronal mass ejection (CME), 74 % to a solar flare, 15 % to interplanetary type II bursts, and 22 % to coronal type II bursts. These findings are consistent with the interpretation that the associated CMEs are the driving agents of the EUV waves.  相似文献   

6.
Yoshiyuki Kawata 《Icarus》1983,56(3):453-464
Models of Saturn's rings based on the classical multilayer assumption have been studied in the infrared. Thermal energy balance of Saturn's rings is treated rigorously by solving the infrared radiative transfer equations. It was found that a homogeneous multilayer model is incompatible with the observed infrared brightness variation of the A and B rings, although it can fit that of the C ring. The alternative inhomogeneous multilayer model with dark particles within a bright haze of small icy particles is presented in order to satisfy the available infrared data of the A, B, and C rings. The results based on the inhomogeneous multilayer model may be summarized as follows: The observed infrared brightness data of the three rings are explained in terms of the different optical thickness without having significant differences in the ring-particle properties, such as albedo, spin rate, and sizes. But each ring contains a different amount of bright haze particles and their concentration within the rings depends on whether or not dark particles emit radiation mostly from one hemisphere (slow rotator and/or low thermal inertia). If a dark particle is an isothermal radiator, the possible ranges of A1 and A2 for all three rings are given by 0.9 ? A1 ? 0.95 and 0.0 ? A2 ? 0.15, where A1 and A2 are the bolometric bond albedos of a bright haze and a dark particle, respectively. The possible ranges of the optical thickness ratio X of the dark particle layer to the total ring layer for the rings A, B, and C are given by 0.65 ? X ? 0.75, 0.8 ? X ? 0.9, and 0.8 ? X ? 1.0, respectively. If a dark particle is a slow rotator, we obtain 0.9 ? A1 ? 0.95 and 0.0 ? A2 ? 0.4 for all three rings. The ranges of X for the rings A, B, and C are given by 0.35 ? X ? 0.7, 0.65 ? X ? 0.9, and 0.35 ? X ? 1.0, respectively. In this paper, for the first time, a consistent model is presented which is applicable to all three rings from the multilayer point of view.  相似文献   

7.
Observation of prompt γ-rays in solar flares requires that ions be accelerated to >30 MeV nucl-1 in ? 2 s. A model for prompt acceleration is developed. The energy release is assumed to occur in a flaring loop with the energy release region being ? 104 km in dimensions and with an Alfvén speed υ A ? 3 × 103 km s-1. The acceleration is assumed to occur in two steps. The second-step acceleration from ? ? T = 1/2m p υA 2 nucl-1 to ? 30 MeV nucl-1 is attributed to stochastic acceleration by hydromagnetic turbulence which is found to be fast enough under conditions which are not extreme. Main emphasis is placed on the first step, called preacceleration, to ? T ? 100 keV nucl-1. Preacceleration mechanisms which involve accelerating a small fraction of ions from the tail of a Maxwellian distribution are unacceptable because they would lead to enormous abundance anomalies. Preacceleration is attributed either to localized heating of ions to ? 109 K or to acceleration by potential electric fields. The latter mechanism is favoured and some theoretical ideas are outlined based on observations of reconnection in the Earth's magnetotail. Whether energetic ions are prompt, delayed or unobservable depends only on the rate at which the stochastic acceleration proceeds. The second-step acceleration of electrons, invoked to account for a harder microwave component, is predicted to be slower by a factor ? 3 than for ? 30 MeV nucl-1 ions.  相似文献   

8.
We present the results of our observations of the H2O maser emission toward the complex source ON2 associated with an active star-forming region. The observations were performed in a wide range of radial velocities, from ?75 to 90 km s?1. We have detected an emission with flux densities of 9.2, 4, and 26 Jy at radial velocities of ?33.5, ?24.4, and ?18.8 km s?1, respectively, at which no emission has been observed previously. The detected emission is most likely associated with a hitherto unknown cluster of maser spots located between the northern (N) and southern (S) components of the source ON2 (closer to the northern one). This cluster may be associated with one of the three CO molecular outflows in the ON2 region. We have also detected an emission at ?22 and ?14.5 km s?1 in N and at 12.6 km s?1 in S, which has extended significantly the velocity ranges of the maser emission in these sources and allowed their models to be improved.  相似文献   

9.
We carried out high-precision photometric observations of three eclipsing ultrashort-period contact binaries (USPCBs). Theoretical models were fitted to the light curves by means of the Wilson-Devinney code. The solutions suggest that the three targets have evolved to a contact phase. The photometric results are as follows: (a) 1SWASP?J030749.87?365201.7, \(q=0.439\pm0.003\), \(f=0.0\pm3.6\%\); (b) 1SWASP?J213252.93?441822.6, \(q=0.560\pm0.003\), \(f=14.2\pm1.9\%\); (c) 1SWASP?J200059.78+054408.9, \(q=0.436\pm0.008\), \(f=58.4\pm1.8\%\). The light curves show O’Connell effects, which can be modeled by the assumed cool spots. The cool spots models are strongly supported by the night-to-night variations in the \(I\)-band light curves of 1SWASP?J030749.87?365201.7. For a comparative study, we collected the whole set of 28 well-studied USPCBs with \(P < 0.24\) day. Thus, we found that most of them (17 of 28) are in shallow contact (i.e. fill-out factors \(f<20\%\)). Only four USPCBs have deep fill-out factors (i.e. \(f>50\%\)). Generally, contact binaries with deep fill-out factors are going to merge, but it is believed that USPCBs have just evolved to a contact phase. Hence, the deep USPCB 1SWASP?J200059.78+054408.9 seems to be a contradiction, making it very interesting. Particularly, 1SWASP?J030749.87?365201.7 is a zero contact binary in thermal equilibrium, implying that it should be a turn-off sample as predicted by the thermal relaxation oscillation (TRO) theory.  相似文献   

10.
Space Science helped the start of the open space race after the launch of Sputnik-1 in 1957. Conversely, the use of space vehicles during the cold war allowed the scientists to conduct many observations and make discoveries which have dramatically changed our views of our own Solar System and of the Universe. What will be the future of this activity in the next century, with the disappearance of the cold war justification and in the context of shrinking budgets? Is there a future for space exploration? For what benefit and how will space science programmes be conducted? Who will be the main players? Are there limits to our ability to explore? The pioneers of space research in the post-Sputnik-1 era, like J-L. Steinberg, had both an easier and a more difficult time than space scientists of today. Nevertheless, space science will only survive in the next century if it succeeds in reaching the deep interest and motivation of society at large.  相似文献   

11.
Leping Li  Jun Zhang 《Solar physics》2013,282(1):147-174
From 16 to 21 August 2010, a northern (???N60) polar crown filament was observed by Solar Dynamics Observatory (SDO). Employing the six-day SDO/AIA data, we identify 69 barbs, and select 58 of them, which appeared away from the western solar limb (???W60), as our sample. We systematically investigate the evolution of filament barbs. Three different types of apparent formation of barbs are detected, including i)?the convergence of surrounding moving plasma condensations, comprised 55.2?% of our sample, ii)?the flows of plasma condensations from the filament, comprised 37.9?%, and iii)?the plasma injections from the neighboring brightening regions, comprised 6.9?%. We also find three different ways that barb disappear, involving: i)?bi-lateral movements (44.8?%), and ii)?outflowing of barb plasma (27.6?%) results in the disappearance of a barb, as well as iii)?disappearance of a barb is associated with a neighboring brightening (27.6?%). The evolution of the magnetic fields, e.g. emergence and cancellation of magnetic flux, may cause the formation or disappearance of the barb magnetic structures. Barbs exchange plasma condensations with the surrounding atmosphere, filament, and nearby brightenings, leading to the increase or drainage of barb material. Furthermore, we find that all the barbs undergo oscillations. The average oscillation period, amplitude, and velocity are 30?min, 2.4?Mm, and 5.7?km?s?1, respectively. Besides the oscillations, 21 (36?%) barbs manifested sideward motions having an average speed of 0.45?km?s?1. Small-scale wave-like propagating disturbances caused by small-scale brightenings are detected, and the barb oscillations associated with these disturbances are also found. We propose that the kinematics of barbs are influenced or even caused by the evolution of the neighboring photospheric magnetic fields.  相似文献   

12.
We investigate specific models for a dark energy universe leading to Quasi-Rip and Pseudo-Rip cosmologies. In the Quasi-Rip model the equation of state parameter w is less than ?1 in the first stage, but becomes larger than ?1 in the second stage. In the Pseudo-Rip model the Hubble parameter tends to a constant value in the remote future, although w is always less than ?1. Conditions for the appearance of the Quasi-Rip and the Pseudo-Rip in terms of the parameters in the equation of state are determined. Analogies with the theory of viscous cosmology are discussed.  相似文献   

13.
R. P. Kane 《Solar physics》2014,289(7):2669-2675
When a Coronal Mass Ejection (CME) is ejected by the Sun, it reaches the Earth orbit in a modified state and is called an ICME (Interplanetary CME). When an ICME blob engulfs the Earth, short-scale cosmic-ray (CR) storms (Forbush decreases, FDs) occur, sometimes accompanied by geomagnetic Dst storms, if the B z component in the blob is negative. Generally, this is a sudden process that causes abrupt changes. However, sometimes before this abrupt change (FD) due to strong ICME blobs, there are slow, small changes in interplanetary parameters such as steady increases in solar wind speed V, which are small, but can last for several hours. In the present communication, CR changes in such an event are illustrated in the period 1?–?3 October 2013, when V increased steadily from ~?200 km?s?1 to ~?400 km?s?1 during 24 hours on 1 October 2013. The CR intensities decreased by 1?–?2 % during some hours of this 24-hour interval, indicating that CR intensities do respond to these weak but long-lasting increases in interplanetary solar wind speed.  相似文献   

14.
A search has been carried out for the presence of rotational lines of two bands of the (0, 0) and (1, 1) A 1Π?–?X 1Σ+ system of the AlH molecule in the high resolution Fourier Transform Spectra of sunspots observed at the National Solar Observatory at Kitt Peak. Though the presence of the AlH molecule in sunspots was confirmed by Wallace, Hinkle, and Livingston (An Atlas of Sunspot Umbral Spectra in the Visible from 15?000 to 25?000 cm?1 (3920 to 6664 Å), Tech. Rep. 00-001, National Solar Observatory, Tucson, AZ, 2000), there is no report on the rotational temperature in the literature by identifying AlH molecular lines. The results obtained in this new search using a suitable identification technique are compared with the results reported by Wallace, Hinkle, and Livingston (2000). In view of the fact that the rotational temperatures of the molecules could be used to test photospheric and sunspot models, the effective rotational temperature for the (0, 0) band of the A?–?X system of AlH molecule is estimated by measuring the equivalent widths of well resolved spectral lines and its value justifies the existence of the AlH molecule in sunspots.  相似文献   

15.
We present a new approach to combine remote observations and in-situ data by STEREO/HI and Wind, respectively, to derive the kinematics and propagation directions of interplanetary coronal mass ejections (ICMEs). We use two methods, Fixed-? (F?) and Harmonic Mean (HM), to convert ICME elongations into distance, and constrain the ICME direction such that the ICME distance–time and velocity–time profiles are most consistent with in-situ measurements of the arrival time and velocity. The derived velocity–time functions from the Sun to 1?AU for the three events under study (1?–?6 June 2008, 13?–?18 February 2009, 3?–?5 April 2010) do not show strong differences for the two extreme geometrical assumptions of a wide ICME with a circular front (HM) or an ICME of small spatial extent in the ecliptic (F?). Due to the geometrical assumptions, HM delivers the propagation direction further away from the observing spacecraft with a mean difference of ≈?25°.  相似文献   

16.
Abstract— We have studied the carbon and nitrogen stable isotope geochemistry of a small pristine sample of the Tagish Lake carbonaceous chondrite by high‐resolution stepped‐combustion mass spectrometry, and compared the results with data from the Orgueil (CI1), Elephant Moraine (EET) 83334 (CM1) and Murchison (CM2) chondrites. The small chip of Tagish Lake analysed herein had a higher carbon abundance (5.81 wt%) than any other chondrite, and a nitrogen content (?1220 ppm) between that of CI1 and CM2 chondrites. Owing to the heterogeneous nature of the meteorite, the measured carbon abundance might be artificially high: the carbon inventory and whole‐rock carbon isotopic composition (δ13C ? +24.4%o) of the chip was dominated by 13C‐enriched carbon from the decomposition of carbonates (between 1.29 and 2.69 wt%; δ13C ? +67%o and δ18O ? +35%o, in the proportions ?4:1 dolomite to calcite). In addition to carbonates, Tagish Lake contains organic carbon (?2.6 wt%, δ13C ? ?9%o; 1033 ppm N, δ15N ? +77%o), a level intermediate between CI and CM chondrites. Around 2% of the organic material is thermally labile and solvent soluble. A further ?18% of the organic species are liberated by acid hydrolysis. Tagish Lake also contains a complement of presolar grains. It has a higher nanodiamond abundance (approximately 3650–4330 ppm) than other carbonaceous chondrites, along with ?8 ppm silicon carbide. Whilst carbon and nitrogen isotope geochemistry is not diagnostic, the data are consistent with classification of Tagish Lake as a CI2 chondrite.  相似文献   

17.
Abstract— Mercury is difficult to observe because it is so close to the Sun. However, when the angle of the ecliptic is near maximum in the northern hemisphere, and Mercury is near its greatest eastern elongation, it can be seen against the western sky for about a half hour after sunset. During these times, we were able to map sodium D2 emission streaming from the planet, forming a long comet‐like tail. On 2001 May 26 (U.T.) we mapped the tail downstream to a distance of ?40 000 km. Sodium velocities in the tail increased to ?11 km s?1 at 40 000 km as the result of radiation pressure acceleration. On 2000 June 5 (U.T.) we mapped the cross‐sectional extent of the tail at a distance of ?17 500 km downstream. At this distance, the half‐power full‐width of the emission was ?20 000 km. We estimated the transverse velocity of sodium in the tail to range from 2 to 4 km s?1. The velocities we observed imply source velocities from the planet surface of the order of 5 km s?1, or 4 eV. Particle sputtering is a likely candidate for production of sodium atoms at these velocities. The total flux of sodium in the tail was ?1 times 1023 atoms s?1, which corresponds to 1 to 10% of the estimated total production rate of sodium on the planet.  相似文献   

18.
We analyze multiwavelength observations of an M2.9/1N flare that occurred in AR NOAA 11112 on 16 October 2010. AIA 211 Å EUV images reveal the presence of a faster coronal wave (decelerating from ≈?1390 to ≈?830 km?s?1) propagating ahead of a slower wave (decelerating from ≈?416 to ≈?166 km?s?1) towards the western limb. The dynamic radio spectrum from Sagamore Hill radio telescope shows the presence of a metric type II radio burst, which reveals the presence of a coronal shock wave (speed ≈?800 km?s?1). The speed of the faster coronal wave, derived from AIA 211 Å images, is found to be comparable to the coronal shock speed. AIA 171 Å high-cadence observations showed that a coronal loop, which was located at a distance of ≈?0.32R to the west of the flaring region, started to oscillate by the end of the impulsive phase of the flare. The results indicate that the faster coronal wave may be the first driver of the transversal oscillations of coronal loop. As the slower wave passed through the coronal loop, the oscillations became even stronger. There was a plasmoid eruption observed in EUV and a white-light CME was recorded, having velocity of ≈?340?–?350 km?s?1. STEREO 195 Å images show an EIT wave, propagating in the same direction as the lower-speed coronal wave observed in AIA, but decelerating from ≈?320 to ≈?254 km?s?1. These observations reveal the co-existence of both waves (i.e. coronal Moreton and EIT waves), and the type II radio burst seems to be associated with the coronal Moreton wave.  相似文献   

19.
To understand the physics of sunspots, it is important to know the properties of their magnetic field, and especially its height stratification plays a substantial role. There are mainly two methods to assess this stratification, but they yield different magnetic gradients in the photospheric layers. Determinations based on the several spectral lines of different formation heights and the slope of their profiles result in gradients of ?2 to ?3 G?km?1, or even steeper. This is similar for the total magnetic field strength and for the vertical component of the magnetic field. The other option is to determine the horizontal partial derivatives of the magnetic field, and with the condition \(\operatorname{div} {{\boldsymbol {B}}} = 0\) also the vertical derivative is known. With this method, gradients of ?0.5 G?km?1 and even shallower are obtained. Obviously, these results do not agree. If chromospheric spectral lines are included, only shallow gradients around ?0.5 G?km?1 are obtained. Shallow gradients are also found from gyro-resonance measurements in the radio wave range 300?–?2000 GHz.Some indirect methods are also considered, but they cannot clarify the total picture. An analysis of a numerical simulation of a sunspot indicates a shallow gradient over a wide height range, but with slightly steeper gradients in deep layers.Several ideas to explain the discrepancy are also discussed. With no doubts cast on Maxwell’s equations, the first one is to look at the uncertainties of the formation heights of spectral lines, but a wider range of these heights would require an extension of the solar photosphere that is incompatible with observations and the theory of stellar atmospheres. Submerging and rising magnetic flux might play a role in the outer penumbra, if the resolution is too low to separate them, but it is not likely that this effect acts also in the umbra. A quick investigation assuming a spatial small scale structure of sunspots together with twist and writhe of individual flux tubes shows a reduction of the measured magnetic field strength for spectral lines sensitive to a larger height range. However, sophisticated investigations are required to prove that the explanation for the discrepancy lies here, and the problem of the height gradient of the magnetic field in sunspots is still not solved.  相似文献   

20.
We observed solar prominences with the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory on 30 June 2010 and 15 August 2011. To determine the temperature of the prominence material, we applied a nonlinear least-squares fitting of the radiative transfer model. From the Doppler broadening of the Hα and Ca ii lines, we determined the temperature and nonthermal velocity separately. The ranges of temperature and nonthermal velocity were 4000?–?20?000 K and 4?–?11 km?s?1. We also found that the temperature varied much from point to point within one prominence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号