首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The abundances of PH3, CH3D, and GeH4 are derived from the 2100- to 2250-cm?1 region of the Voyager 1 IRIS spectra. No evidence is seen for large-scale variations of the phosphine abundance over Jovian latitudes between ?30 and +30°. In the atmospheric regions corresponding to 170–200°K, the derived PH3/H2 value is (4.5 ± 1.5) × 10?7 or 0.75 ± 0.25 times the solar value. This result, compared with other PH3 determinations at 10 μm, suggests than the PH3/H2 ratio on Jupiter decreases with atmospheric pressure. In the 200–250°K region, we derive, within a factor of 2, CH3D/H2 and GeH4/H2 ratios of 2.0 × 10?7 and 1.0 × 10?9, respectively. Assuming a C/H value of 1.0 × 10?3, as derived from Voyager, our CH3D/H2 ratio implies a D/H ratio of 1.8 × 10?5, in reasonable agreement with the interstellar medium value.  相似文献   

2.
A radiative seasonal model which incorporates a multilayer radiative transfer treatment at wave-lengths longward of 7 μm is presented and applied to Saturn's stratosphere. Opacities due to H2-He, CH4, C2H2, and C2H6 are included. Season-dependent insolation is shown to produce a strong hemispheric asymmetry decreasing with depth at the Voyager encounter times, and seasonal amplitudes of 30°K at the poles are predicted in the high stratosphere. The ring-modulated dependence of the insolation and the orbital eccentricity are shown to have a significant effect. Calculations agree closely with the Voyager 1 and 2 radio occultation ingress profiles recorded at 76°S and 36.5°S for CH4/H2 = 3.5 + 1.4/? 1.0 × 10?3;the estimated errors include modeling systematic errors and uncertainties in the occultations profiles. The possible role of aerosols in the stratospheric heating is analyzed. The Voyager 2 egress profile recorded at 31°S cannot be reproduced by calculations. Some constraints on the C2H2 and C2H6 abundances are derived. The upper portion of the occultation profiles (p < 3mbar) can be matched for C2H2/H2 = 1.0 + 1.3/?0.6 × 10?7, C2H6/H2 = 1.5 + 1.8/?0.9 × 10?6 at 76°S and C2H2/H2 = 4 + 6/?4 × 10?8, C2H6/H2 = 6 + 9/?6 × 10?7 at 36.5°N. At the northern occultation latitude, the discrepancy with the concentrations derived from analysis of IRIS spectra by R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel (1984, Astrophys. J.287) can be explained by a sharp variation of the mixing ratios of these gases with altitude in the upper stratosphere. Other interpretations are discussed.  相似文献   

3.
Seven trace elements (Ag, Co, Cs, Ga, In, Te, Tl) are either completely retained or are lost to the same extent in Abee samples heated at 700 °C for one week at 10?5-10?3 atm Ne or in 10?5 atm H2. Bi and Se are lost significantly more easily and Zn is better retained in samples heated in Ne than in H2. Zn retention varies inversely with ambient Ne pressure. Mobile element transport seems unaffected by physical interactions in the gas phase but may reflect solid-state surface effects. During week-long heating at low pressures (initially ~ 10?5 atm H2) S is mobilized only at 1000 °C while C contents decrease progressively from 600–1000 °C. Apparent activation energies for C are 60 kcal/mole below 700 °C and 16 kcal/mole above this temperature suggesting diffusive loss from different hosts and/or processes over different temperature intervals. In E4–6 chondrites C and S contents largely reflect nebular fractionation and condensation processes.  相似文献   

4.
Edwin S. Barker 《Icarus》1976,28(2):247-268
The patrol of Martian water vapor carried out with the echelle-coudé scanner at McDonald Observatory during the 1972–1974 apparition has produced 469 individual photoelectric scans of Doppler-shifted Martian H2O lines. Almost an entire Martian year was covered during the 1972–1974 period (Ls = 118?269° and 301?80°). Three types of coverage have been obtained: (1) regular—the slit placed pole to pole on the central meridian; (2) latitudinal—the slit placed parallel to the Martian equator at various latitudes; (3) diurnal—the slit placed parallel to the terminator at several times during a Martian day measured from local noon.Both the seasonal and diurnal effects seem to be controlled by the insolation and not the local topography with respect to the 6.1 mb surface. A slight negative correlation with elevation was noted which improved during the seasons of greater H2O content. The previous seasonal behavior has been confirmed and amplified. The following are the primary conclusions: (1) The planetwide abundance is low (5?15 μm of ppt H2O) during both equinoctical periods. (2) The maximum abundance of about 40 μm occurs in each hemisphere after solstice at about 40° latitude in that hemisphere. (3) The latitude of the maximum amount in the N-S distribution precedes the latitude of maximum insolation by 10–20° of latitude. (4) During the “drier” seasons (5–20 μm) near the equinoxes on Mars, the atmospheric water vapor changes by a factor of 2–3x over a diurnal cycle with the maximum near local noon. (5) The effects of the 1973 dust storm during the southern summer reduced the amount of water vapor over the southern hemisphere regions to 3–8 μm.  相似文献   

5.
Abstract— Yamato 000593, a nakhlite, was analyzed in terms of its magnetic record and magnetomineralogy. The natural remanent magnetization (NRM: 3.55–6.07 times 10?5 Am2/kg) was thermally demagnetized at ~320 °C, and it was unstable against alternating field demagnetization. Based on analyses of thermomagnetic curves, the temperature dependence of hysteresis parameters, and microscopic observations, the magnetic minerals mainly consist of magnetite (0.68 wt% of the sample, including ~5% Fe2TiO4) of less than 100 μm in size, associated with minor amounts of monoclinic pyrrhotite (<0.069 wt% of the sample) and goethite. Thermal demagnetization of NRM at ~330 °C is explained due to an offset of magnetization of antipodal NRM components of magnetite, whereas it is not due to a pyrrhotite Curie point. Large magnetite grains show exsolution texture with ilmenite laths, and are cut by silicate (including goethite) veins that formed along cracks. Numerous single‐domain (SD) and pseudo‐single‐domain (PSD) magnetite grains are scattered in the mesostasis and adjacent olivine grains. Moderate coercive forces of HC = 6.8 mT and HRC = 31.1 mT suggest that Yamato 000593 is fundamentally able to carry a stable NRM; however, NRM was found to be unstable. Accordingly, the meteorite was possibly crystallized at 1.3 Ga under an extremely weak or absent magnetic field, or was demagnetized by impact shock at 12 Ma (ejection age) on Mars. This finding differs from the results of previous paleomagnetic studies of SNC (shergottites, nakhlites, chassignites, and orthopyroxenite) Martian meteorites. The significant dipole magnetic field resulting from the molten metallic core was probably absent during the Amazonian Epoch (after 1.8 Ga) on Mars.  相似文献   

6.
F.P. Fanale 《Icarus》1976,28(2):179-202
Observations of Mars and cosmochemical considerations imply that the total inventory of degassed volatiles on Mars is 102 to 103 times that present in Mars' atmosphere and polar caps. The degassed volatiles have been physically and chemically incorporated into a layer of unconsolidated surface rubble (a “megaregolith”) up to 2km thick. Tentative lines of evidence suggest a high concentration (~5g/cm2) of 40 Ar in the atmosphere of Mars. If correct, this would be consistent with a degassing model for Mars in which the Martian “surface” volatile inventory is presumed identical to that of Earth but scaled to Mars' smaller mass and surface area. The implied inventory would be: (40Ar) = 4g/cm2, (H2O) = 1 × 105g/cm2, (CO2) = 7 × 103g/cm2, (N2) = 3 × 102g/cm2, (Cl) = 2 × 103g/cm2, and (S) = 2 × 102g/cm2. Such a model is useful for testing, but differences in composition and planetary energy history may be anticipated between Mars and Earth on theoretical grounds. Also, the model demands huge regolith sinks for the volatiles listed.If the regolith were in physical equilibrium with the atmosphere, as much as 2 × 104g/cm2 of H2O could be stored in it as hard-frozen permafrost, or 5 × 104g/cm2 if equilibrium with the atmosphere were inhibited. Spectral measurements of Martian regolith material and laboratory measurement of weathering kinetics on simulated regolith material suggest large amounts of hydrated iron oxides and clay minerals exist in the regolith; the amount of chemically bound H2O could be from 1 × 104 to 4 × 104g/cm2. In an Earth-analogous model, a 2 km mixed regolith must contain the following concentrations of other volatile-containing compounds by weight: carbonates = 1.5%, nitrates = 0·3%, chlorides = 0.6%, and sulfates = 0.1%. Such concentrations would be undetectable by current Earth-based spectral reflectance measurements, and (except the nitrates) formation of the “required” amounts of these compounds could result from interaction of adsorbed H2O and ice with primary silicates expected on Mars. Most of the CO2 could be physically adsorbed on the regolith.Thus, maximum amounts of H2O and other volatiles which could be stored in the Mars regolith are marginally compatible with those required by an Earth-analogous model, although a lower atmospheric 40Ar concentration and regolith volatile inventory would be easier to reconcile with observational constraints. Differences in the ratios of H2O and other volatiles to 40Ar between surface volatiles on the real Mars and on an Earth-analogous Mars could result from and reflect differences in bulk composition and time history of degassing between Mars and Earth. Models relating Viking-observable parameters, e.g., (40Ar) and (36Ar), to the time history and overall intensity of Mars degassing are given.  相似文献   

7.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

8.
Sample 72161,11 (dark mantle at LRV-3) has a graphic mean grain size (M z) of 3.88 ø, inclusive graphic standard deviation (σ I) of 1.29, and a total carbon content of 204µg C g?1 sample, and is, therefore, quite mature. However, the agglutinate content is only 30% in the 90–177µm particles, indicating an apparent departure from steady state. Analyses of C, CH4, and H2 concentrations in size fractions larger than 149µm show that the volume correlated component of these species increases with increasing grain size. In a homogeneous agglutinate population the volume correlated component is expected to be independent of grain size. The observed increase can be interpreted in terms of the mixing of a dominant local population of coarser agglutinates, with high carbon and hydrogen, with an imported population of finer agglutinates relatively poor in carbon and hydrogen. When analyses of size-fractions from the bulk sample are considered, these effects are apparently obliterated by the admixture of coarse-grained material low in agglutinates. It seems likely that this low agglutinate content is a consequence of the breakdown of the fragile, large agglutinates in the imported material during their movement to the sample site.  相似文献   

9.
Abstract— Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4–41. The magnetite produced was identified by x-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion-controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10 000 ppmv H2S (Lauretta et al., 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.  相似文献   

10.
A thermodynamical analysis of the multicomponent system SiTiAlFeMnMgCaNaKPCHO open with respect to CO2, CO, H2O was carried out. Hydration and carbonatization processes are proposed to be geochemical consequences of the hypothesis of quasi-equilibrium conditions between the troposphere and crustal surface rocks. The probable rock-forming hydrated mineral phases are represented by epidote, glaucophane, tremolite, phlogopite, and annite; the carbonatization results in existence of calcite and dolomite as rock-forming minerals of weathered alkaline lavas. The surface rocks are assumed to have high ferric/ferrous iron ratios. The wollastonite equilibrium is rejected as a buffering chemical reaction. Hydrated minerals could be stable at least up to 5-km depths and contribute about 0.1 × 1024 g of H2O whereas about (0.7–0.8) × 1024 g of H2O would be consumed in ferrous iron oxidation with concomitant hydrogen dissipation. The distribution of H2O in the outer planetary shells is possibly a function of their temperatures.  相似文献   

11.
《Icarus》1987,70(1):1-12
An array spectrometer was used on the nights of 1985 May 30–June 1 to observe the disks of Uranus and Neptune in the spectral regions 7–14 and 17–23 μm with effective resolution elements ranging from 0.23 to 0.87 μm. In the long-wavelength region, the spectra are relatively smooth with the broad S(1) H2 collision-induced rotation line showing strong emission for Neptune. In the short-wavelength spectrum of Uranus, an emission feature attributable to C2H2 with a maximum stratospheric mixing ratio of 9 × 10−9 is apparent. An upper limit of 2 × 10−8 is placed on the maximum stratospheric mixing ratio of C2H6. The spectrum of Uranus is otherwise smooth and quantitatively consistent with the opacity provided by H2 collision-induced absorption and spectrally continuous stratospheric emission, as would be produced by aerosols. Upper limits to detecting the planet near 8 μm indicate a CH4 stratospheric mixing ratio of 1 × 10−5 or less, below a value consistent with saturation equilibrium at the temperature minimum. In the short-wavelength spectrum of Neptune, strong emission features of CH4 and C2H6 are evident and are consistent with local saturation equilibrium with maximum stratospheric mixing ratios of 0.02 and 6 × 10−6, respectively. Emission at 8–10 μm is most consistent with a [CH3D]/[CH4] volume abundance ratio of 5 × 10−5. The spectrum of Neptune near 13.5 μm is consistent with emission by stratospheric C2H2 in local saturation equilibrium and a maximum mixing ratio of 9 × 10−7. Radiance detected near 10.5 μm could be attributed to stratospheric C2H4 emission for a maximum mixing ratio of approximately 3 × 10−9. Quantitative results are considered preliminary, as some absolute radiance differences are noted with respect to earlier observations with discrete filters.  相似文献   

12.
Altitude profiles for the number densities of NO, NO2, NO3, N2O5, HNO2, CH3O, CH3O2, H2CO, OH, and HO2 are calculated as a function of time of day with a steady-state photochemical model in which the altitude profiles for the number densities of H2O, CH4, H2, CO, O3, and the sum of NO and NO2 are fixed at values appropriate to a summer latitude of 34°. Average daily profiles are calculated for the long-lived species, HNO3, H2O2, and CH3O2H.The major nitrogen compound HNO3 may have a number density approaching 5 × 1011 molecules cm?3 at the surface, although an effective loss path due to collisions with particulates could greatly reduce this value.The number density of OH remains relatively unchanged in the first 6 km and reaches 1 × 107 molecules cm?3 at noon, while the number density of HO2 decreases throughout the lower troposphere from its noontime value of 8 × 108 molecules cm?3 at the surface.H2O2 and H2CO both have number densities in the ppb range in the lower troposphere.Owing to decreasing temperature and water concentration, the production of radicals and their steady-state number densities decrease with altitude, reaching a noontime minimum of 1 × 108 molecules cm?3 for OH and 3 × 107 molecules cm?3 for HO2 at the tropopause. The related minor species show even sharper decreases with increasing altitude.The primary path for interconverting OH and HO2 serves as the major sink for CO and leads to a tropospheric lifetime for CO of ~0.1 yr.Another reaction cycle, the oxidation of CH4, is quite important in the lower troposphere and leads to the production of H2CO along with the destruction of CH4 for which a tropospheric lifetime of ~2 yr is estimated.The destruction of H2CO that was produced in the CH4 oxidation cycle provides the major source of CO and H2 in the atmosphere.  相似文献   

13.
Y. Benkheiri  P. Pellas  D. Storzer 《Icarus》1979,40(3):497-501
The cooling rate of one silicate inclusion from Copiapo (IA iron) was determined by means of the multiple fission-track-detector method [P. Pellas and D. Storzer, 1977, in Comets, Asteroids, Meteorites (A. H. Delsemme, Ed.), pp. 335–362, University of Toledo]. The preliminary value comes to 1.1?0.5+0.6°C/my for the temperature range 30–350°C. Within the limits of errors this cooling rate agrees with the less precise value of 0.9?0.5+0.8°C/my obtained for one inclusion from Landes (IA). An extrapolation of the fission-track cooling rate through the temperature interval 500–600°C gives a value of ~4°C/my in good agreement with metallographic data for IA irons (2–4°C/my).  相似文献   

14.
Radiation synthesis has been proposed as a mechanism for changing the nature of the outer few meters of ice in a comet stored 4.6 billion years in the Oort cloud and may explain some of the differences observed between new and more evolved comets. Cometary-type ice mixtures were studied in a laboratory experiment designed to approximately simulate the expected temperature, pressure, and radiation environment of the interstellar Oort cloud region. The 2.5- to 15-μm infrared absorption features of thin ice films were analyzed near 20°K before and after 1 MeV proton irradiation. Various ice mixtures included the molecules H2O, NH3, CH4, N2, C3H8, CO, and CO2. All experiments confirm the synthesis of new molecular species in solid phase mixtures at 20°K. The synthesized molecules, identified by their infrared signatures, are C2H6, CO2, CO, N2O, NO, and CH4 (weak). Synthesized molecules, identified by gas chromatographic (GC) analysis of the volatile fraction of the warmed irradiated ice mixture, are C2H4 or C2H6, and C3H8. When CH4 is present in the irradiated ice mixture, long-chained volatile hydrocarbons and CO2 are synthesized along with high-molecular-weight carbon compounds present in the room temperature residue. Irradiated mixtures containing CO and H2O synthesize CO2 and those CO2 and H2O synthesize CO. Due to radiation synthesis, ~1% of the ice was converted into a nonvolatile residue containing complicated carbon compounds not present in blank samples. These results suggest that irrespective of the composition of newly accreted comets, initial molecular abundances can be altered and new species created as a result of radiation synthesis. Irradiated mixtures exhibited thermoluminescence and pressure enhancements during warming; these phenomena suggest irradiation synthesis of reactive species. Ourbursts in new comets resulting from similar radiation induced exothermic activity would be expected to occur beginning at distances of the order of 100 AU.  相似文献   

15.
A laboratory study was performed using the Visible Oxford Space Environment Goniometer in which the broadband (350–1250 nm) bidirectional reflectance distribution function (BRDF) of the Winchcombe meteorite was measured, across a range of viewing angles—reflectance: 0°–70°, in steps of 5°; incidence: 15°, 30°, 45°, and 60°; and azimuthal: 0°, 90°, and 180°. The BRDF dataset was fitted using the Hapke BRDF model to (1) provide a method of comparison to other meteorites and asteroids, and (2) to produce Hapke parameter values that can be used to extrapolate the BRDF to all angles. The study deduced the following Hapke parameters for Winchcombe: w = 0.152 ± 0.030, b = 0.633 ± 0.064, and hS = 0.016 ± 0.008, demonstrating that it has a similar w value to Tagish Lake (0.157 ± 0.020) and a similar b value to Orgueil (0.671 ± 0.090). Importantly, the surface profile of the sample was characterized using an Alicona 3D® instrument, allowing two of the free parameters within the Hapke model φ and θ ¯ , which represent porosity and surface roughness, respectively, to be constrained as φ = 0.649 ± 0.023 and θ ¯ = 16.113° (at 500 μm size scale). This work serves as part of the characterization process for Winchcombe and provides a reference photometry dataset for current and future asteroid missions.  相似文献   

16.
Abstract— Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasiblity. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325°± 5 °C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 °C–1350 °C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 °C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the PNa for these experimental conditions to be in the 10?6 atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable of producing chondrules are sufficient to volatilize Na. Sodium volatilization reaction rates will be reduced to varying degrees from melt droplets, depending on the magnitude of the PNa generated. A combination of Na vapor during, and Na diffusion back into chondrules after, formation could maintain and/or enrich Na concentrations in chondrules.  相似文献   

17.
The trapping and release of H2, CO, CO2, CH4, Ar, Ne, and N2 by amorphous water ice was studied experimentally under dynamic conditions, at low temperatures starting at 16°K, with gas pressure of 5 × 10?8?10?6 Torr. CO, CH4, Ar, and N2 were found to be released in three or four distinct temperature ranges, each resulting from a different trapping mechanism: (a) 30–55°K, where the gas frozen on the water ice evaporates; (b) 135–155°K, where gas is squeezed out of the water ice during the transformation of amorphous ice to cubic ice; (c) 165–190°K, where gas and water are released simultaneously, probably by the evaporation of a clathrate hydrate, and, occasionally (d) 160–175°K, where deeply buried gas is released during the transformation of cubic ice to hexagonal ice. If the third range is indeed due to clathrate formation, CO was found to form this compound. CO2 did not form a clathrate under the experimental conditions. Excess hydrogen did not affect the occlusion of other gases. Hydrogen itself was trapped only at 16°K. Neon was not trapped at 25°K. With cubic ice, the only trapping mechanism is freezing of gas on the ice surface. No fractionation between the gas phase and the ice was observed with a mixture of CO and Ar. Massive ejection of ice grains was observed during the evaporation of the gas in three (a,c,d) out of the four ranges. The experimental results are used to explain several cometary phenomena, especially those occurring at large heliocentric distances, and are applied also to Titan's atmospheric composition and to the possible ejection of ice grains from Enceladus.  相似文献   

18.
Abstract— We report the results of a study of TS2, an unusual compact Type A inclusion from Allende. A distinctive, major feature of this inclusion is that many of its melilite crystals have no dominant core-rim zoning but instead consist of 50–200 μm patches of Mg-rich melilite (Åk32–62, median Åk51) set in or partially enclosed by, and optically continuous with, relatively Al-rich melilite (Åk25–53, median Åk38). The Al-rich regions have jagged, dendritic shapes but occur within crystals having straight grain boundaries. Another unusual feature of this inclusion is the size and spatial distribution of spinel. In many places, especially in the interior of the inclusion, the aluminous melilite encloses numerous, fine (0.5–5 μm) inclusions of spinel and minor perovskite and fassaite. The latter phases also occur as isolated grains throughout the inclusion. Coarse-grained spinel, ~50–150 μm across, occurs in clumps and chains enclosed in relatively Mg-rich melilite, whereas none of the fine spinel grains are clumped together. The sample also contains a spinel-free palisade body, 1.7 × 0.85 mm, that consists almost entirely of Åk-rich (45–65 mol%) melilite. Within the palisade body are two grains of perovskite with extremely Nb-rich (~4–8 wt% Nb2O5) cores and rims of typical composition. All phases in this inclusion have chondrite-normalized REE patterns that are consistent with crystal/melt partitioning superimposed upon a bulk modified Group II pattern. We suggest that TS2 had an anomalous cooling history and favor the following model for the formation of TS2. Precursors having a bulk modified Group II pattern melted. Rapid growth of large, dendritic, nonstoichiometric melilite crystals occurred. The melilite trapped pockets of melt and incorporated excess spinel components and TiO2. Bubbles formed in the residual melt. As crystallization slowed, coarse spinel grew. Some spinel grains collected against bubbles, forming spherical shells, and others formed clumps and chains. Relatively Åk-rich melilite crystallized from the residual melt between dendritic melilite crystals and from melt trapped in pockets and between arms of dendrites, and incorporated the clumps and chains of coarse spinel. Bubbles broke and filled with late-stage melt, their shapes preserved by their spinel shells. Slow cooling, or perhaps an episode of reheating, allowed the early melilite to become stoichiometric by exsolving fine grains of spinel, perovskite and fassaite, and allowed the melilite to form smooth grain boundaries. Dendritic crystals are indicative of rapid growth and the melilite crystals in TS2 appear to be dendritic. Coarse, dendritic melilite crystals have been grown from Type B inclusion melts cooled at ~50–100 °C/h. If those results are applicable to Type A inclusions, we can make the first estimate of the cooling rate of a Type A inclusion, and it is outside the range (2–50 °C/h) generally inferred for Type B inclusions. The rapid cooling inferred here may be part of an anomalous thermal history for TS2, or it may be representative of part of a normal thermal history common to Types A and B that involved rapid cooling early (at high temperatures) as inferred for TS2, and slower cooling later (at lower temperatures), as inferred for Type B inclusions. We prefer the former explanation; otherwise, the unusual features of TS2 that are reported here would be common in Type A inclusions (which they are not).  相似文献   

19.
Abstract– There are 31 proven impact structures in Fennoscandia—one of the most densely crater‐populated areas of the Earth. The recently discovered Keurusselkä impact structure (62°08′ N, 24°37′ E) is located within the Central Finland Granitoid Complex, which formed 1890–1860 Ma ago during the Svecofennian orogeny. It is a deeply eroded complex crater that yields in situ shatter cones with evidence of shock metamorphism, e.g., planar deformation features in quartz. New petrophysical and rock magnetic results of shocked and unshocked target rocks of various lithologies combined with paleomagnetic studies are presented. The suggested central uplift with shatter cones is characterized by increased magnetization and susceptibility. The presence of magnetite and pyrrhotite was observed as carriers for the remanent magnetization. Four different remanent magnetization directions were isolated: (1) a characteristic Svecofennian target rock component A with a mean direction of D = 334.8°, I = 45.6°, α95 = 14.9° yielding a pole (Plat = 51.1°, Plon = 241.9°, A95 = 15.1°), (2) component B, D = 42.4°, I = 64.1°, α95 = 8.4° yielding a pole (Plat = 61.0°, Plon = 129.1°, A95 = 10.6°), (3) component C (D = 159.5°, I = 65.4°, α95 = 10.7°) yielding a pole (Plat = 21.0°, Plon = 39.3°, A95 = 15.6°), and (4) component E (D = 275.5°, I = 62.0°, α95 = 14.4°) yielding a pole (Plat = 39.7°, Plon = 314.3°, A95 = 19.7°). Components C and E are considered much younger, possibly Neoproterozoic overprints, compared with the components A and B. The pole of component B corresponds with the 1120 Ma pole of Salla diabase dyke and is in agreement with the 40Ar/39Ar age of 1140 Ma from a pseudotachylitic breccia vein in a central part of the structure. Therefore, component B could be related to the impact, and thus represent the impact age.  相似文献   

20.
Abstract— The LEW 88774 ureilite is extraordinarily rich in Ca, Al, and Cr, and mineralogically quite different from other ureilites in that it consists mainly of exsolved pyroxene, olivine, Cr-rich spinel, and C. The presence of coarse exsolved pyroxene in LEW 88774 is unique because pyroxene in most other ureilites is not exsolved. The pyroxene has bulk Wo contents of 15–20 mol% and has coarse exsolution lamellae of augite and low-Ca pyroxene, 50 μm in width. The compositions of the exsolved augite (Ca33.7Mg52.8Fe13.5) and host low-Ca pyroxene (Ca4.4Mg75Fe20.6) show that these exsolution lamellae were equilibrated at 1280 °C. A computer simulation of the cooling rate, obtained by solving the diffusion equation for reproducing the diffusion profile of CaO across the lamellae, suggests that the pyroxene was cooled at 0.01 °C/year until the temperature reached 1160 °C. This cooling rate corresponds to a depth of at least 1 km in the parent body, assuming it was covered by a rock-like material. Therefore, LEW 88774 was held at this high temperature for 1.2 × 104years. The proposed cooling history is consistent with that of other ureilites with coarsegrained unexsolved pigeonites. Lewis Cliff 88774 includes abundant Cr-rich spinel in comparison with other ureilites. The range of FeO content of spinels in LEW 88774 is from 1.3 wt% to 21 wt% [Fe/(Fe + Mg) = 0.04–0.6]. The Cr-rich and Fe-poor spinel in LEW 88774 has less Fe (FeO, 1.3 wt%) than spinels in other achondrites. We classify this spinel as an Fe, Al-bearing picrochromite. Most ureilites are depleted in Ca and Al, but this meteorite has high-Ca and Al concentrations. In this respect, as well as mineral assemblage and the presence of coarse exsolution lamellae in pyroxene, LEW 88774 is a unique ureilite. Most differentiated meteorites are poor in volatile elements such as Zn, but the LEW 88774 spinels contain abundant Zn (up to 0.6 wt%). We note that such a high Zn concentration in spinel has been observed in the carbonaceous chondrites and recrystallized chondrites. This unusual ureilite has more primitive characteristics than most other ureilites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号