首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several different metamorphic events — an early or prevariscian regional, a variscian contact and the alpine regional — on marbles from the Schlegeistal (Western Tauern Area, Tyrol, Austria) have resulted in a great variety of mineral assemblages. These assemblages include calcite, dolomite, tremolite, diopside, forsterite, clinohumite-titanianclinohumite-chondrodite, chlorite-serpentine, brucite, and boron minerals karlite and ludwigite.Microprobe analysis fo the minerals indicate that three different generations of chlorite minerals exist (clinochlor, penninite, Al-serpentine). The occurence of these chlorites is explained by formation of serpentine component during the last (alpine) regional metamorphism from the breakdown of forsterite, humite-minerals and diopside. The phase relations are described in the system CaO-MgO-SiO2-H2O-CO2-HF and a petrogenetic grid for the low low X F mineral region is given. The reactions are typical for ophicarbonate rocks, but include clinohumite and chlorite, due to the presence of F and minor amounts of Al2O3.  相似文献   

2.
Metamorphic fluorine reactions in silica deficient dolomite have been investigated between 300 and 560° C in the pressure range from 700 to 2000 bars.The equilibrium temperature for the reaction: 1 talc + 7 dolomite + 2 fluorite 2 chondrodite + 9 calcite + 5 CO2 + 1 H2O was experimentally determined as a function of the CO2-content of the CO2-H2O gas phase for the total pressure of 2000 bars. The results are given as an isobaric equilibrium curve in the -diagram of Fig. 2. The equilibrium data were checked and confirmed by reversed reactions.Under the specified pressure conditions the equilibrium temperatures for the above reaction changes from 380° C for very low -values to approximately 500° C for -values around 0.5, and then remains slightly above 500° C in the -interval between 0.5 and 1.0. The temperature conditions for the formation of chrondrodite from tremolite, dolomite, and fluorite are similar to those for the reaction including talc.  相似文献   

3.
Hydrothermal experiments with mixtures of synthetic minerals have shown the reversibility of the reaction 5 phlogopite + 6 calcite + 24 quartz = 3 tremolite + 5 K-feldspar + 2 H2O + 6 CO2. In an isobaric T – diagram the equilibrium curve reaches a maximum at = 0,75. The P, T-values for this maximum are: 2 kb-523°; 4 kb-585°; 6 kb-625°; P±5%, T±10° C. These results give a first approximation of the P, T conditions responsible for a similar mineral reaction which has been recorded from natural metamorphic assemblages.

Herrn Prof. H. G. F. Winkler danke ich für anregende Diskussionen, desgleichen Herrn Dr. D. Puhan für wichtige Hinweise und Mitteilung seiner exp. Daten. Herrn Prof. V. Trommsdorff und Herrn P. H. Thompson bin ich für petrographische Angaben zu Dank verpflichtet. Der Aufbau der Hydrothermalanlage und die Finanzierung der laufenden Untersuchungen wurde aus den Mitteln des Fonds zur Förderung der wissenschaftlichen Forschung ermöglicht. Für diese Unterstützung gilt daher mein besonderer Dank.  相似文献   

4.
The nature of the near-liquidus phases for a mantle-derived olivine melilitite composition have been determined at high pressure under dry conditions and with various water contents. Olivine and clinopyroxene occur on or near the liquidus and there are no conditions where orthopyroxene crystallizes in equilibrium with the olivine melilitite. We have determined the effect on the liquidus temperature and liquidus phases of substituting CO2 for H2O on a mole for mole basis at 30 kb, using olivine melilitite + 20 wt% H2O at = 0 and = (CO2)/(H2+CO2) (mole fraction) = 0.25, 0.5, 0.75 and 1.0 (i.e. olivine melilitite + 38 wt% CO2). Experiments were buffered by the MH or NNO buffers. At 30 kb, CO2 is only slightly less soluble than water for <0.5 as judged by the slight increase in liquidus temperature on mole-for-mole substitution of CO2 for H2O and at 30 kb, 1200° C, = = 0.5 the olivine melilitite contains 8.8 wt% H2O and 21 wt% CO2 in solution. For 1 the CO2 saturated liquidus is depressed 70 ° C below the anhydrous liquidus and the magma dissolves approx. 17% CO2 at 30kb, 1400 ° C, 1, 0. Infrared spectra of quenched glasses have absorption bands characteristic of CO 3 = and OH- molecules and no evidence for HCO 3 - . The effect of CO 3 = molecules dissolved in the olivine melilitite at high pressure is to suppress the near-liquidus crystallization of olivine and clinopyroxene and bring orthopyroxene and garnet on to the liquidus. We infer that olivine melilitite magmas may be derived by equilibrium partial melting (<5%) of pyrolite at 30 kb, 1150–1200 ° C, provided that both H2O and CO2 are present in the source region in minor amounts. Preferred conditions are 0< <0.5, 0.5< <1, and at low oxygen fugacities (相似文献   

5.
The influence of different degrees of disorder of dolomites on the solubility of MgCO3 in calcite has been studied under isothermal and isobaric conditions. At 900° C, 4kb and 1000° C, 5 and 7kb, varied smoothly as function of the particular structural and cationic disorder of coexisting dolomite. Higher degrees of disorder of dolomite, estimated by the d 00.6/d 11.0 values and the peak height ratio I 01.5/I00.6, lead to greater solubility of MgCO3 in calcite. The run time for all experiments was 96 h, much longer than in previous work. The influence of disorder of dolomite on appears to be larger than that of temperature, as shown by the large range of (0.12–0.30) in calcite at 900° C 4 kb, found in this study. The state of order of dolomite seems to control the solubility limits in this system, and may explain discrepancies found in previous experimental work.  相似文献   

6.
The occurrence of critical assemblages among antigorite, diopside, tremolite, forsterite, talc, calcite, dolomite and magnesite in progressively metamorphosed ophicarbonate rocks, together with experimental data, permits the construction of phase diagrams in terms of the variables P, T, and composition of a binary CO2-H2O fluid. Equilibrium constants are given for the 30 equilibria that describe all relations among the above phases. Ophicalcite, ophidolomite, and ophimagnesite assemblages occupy partially overlapping fields in the diagram. The upper temperature limit of ophicalcite rocks lies below that of ophidolomite and ophimagnesite. The fluid phase in ophicarbonate rocks has 0.8$$ " align="middle" border="0"> , and there are indications that during their progressive metamorphism is approximately equal to P total.  相似文献   

7.
Trace element analyses of 1-atm and high-pressure experiments show that in komatiite and peridotite, the olivine (OL)/liquid (L) distribution coefficient for Al2O3 ( ) increases with pressure and temperature. Olivine in equilibrium with liquid accepts as much as 0.2 wt% Al2O3 in solution at 6 GPa. Convergence to equilibrium compositions at this high level is shown by cation diffusion of Al into synthetic forsterite crystals of low-Al contents in the presence of melt. Convergence to low-Al equilibrium compositions at lower P and T is shown by diffusion of Al out of synthetic forsterite with high initial Al content. Isobaric and isothermal experimental data subsets reveal that temperature and pressure variations both have real effects on . Variation in silicate melt composition has no detectable effect on within the limited range of experimentally investigated mixtures. Least-squares regression for 24 experiments, using komatiite and peridotite, performed at 1 atm to 6 GPa and 1300 to 1960°C, gives the best fit equation: Increase in with increasingly higher-pressure melting is consistent with incorporation of a spinel-like component of low molar volume into olivine, although other substitutions possibly involving more complex coupling cannot be ruled out. High P-T ultrabasic melting residues, if pristine, may be recognized by the high calculated from microprobe analyses of Al2O3 concentrations in residual olivines and estimated Al2O3 concentration in the last liquid removed. In general the low levels of Al in natural olivine from mantle xenoliths suggest that pristine residues are rarely recovered.  相似文献   

8.
The natural occurrence of critical assemblages among the phases clinohumite, calcite, dolomite, tremolite, forsterite, diopside, chlorite, and spinel in metamorphosed impure limestones, together with experimental and thermodynamic data, permits the calculation of phase equilibria governing the stability of clinohumite in terms of the variables P, T, and composition of a CO2-H2O-HF fluid. Equilibrium constant expressions are given for 23 equilibria that describe the stable phase relations between the above phases. Pure OH-clinohumite is considered to be metastable at relatively low pressures. The occurrence of clinohumite in natural marbles is the result of nonideal fluorine substitution which increases the stability of clinohumite. The stability field for clinohumite +calcite, governed primarily by the equilibrium 4forsterite+dolomite+H2O = clinohumite+calcite +CO2, expands to more CO2-rich fluid compositions with increasing fluorine contents and decreasing total pressure. The F/(F+OH) ratio of clinohumite coexisting with calcite, dolomite, and forsterite is a sensitive indicator of the composition of the mixedvolatile fluid phase. The thermodynamic model is in good agreement with observed phase relations and can be used to gain useful information concerning the P-T-X fluid conditions responsible for the formation of clinohumite.  相似文献   

9.
The 6km-thick Karmutsen metabasites, exposed over much of Vancouver Island, were thermally metamorphosed by intrusions of Jurassic granodiorite and granite. Observation of about 800 thin sections shows that the metabasites provide a complete succession of mineral assemblages ranging from the zeolite to pyroxene hornfels facies around the intrusion. The reaction leading to the appearance of actinolite, which is the facies boundary between prehnite-pumpellyite and prehnite-actinolite facies, was examined using calcite-free Karmutsen metabasites collected from the route along the Elk river. In the prehnite-pumpellyite facies, X Fe3+[Fe3+/(Fe3++Al)] in prehnite, pumpellyite and epidote buffered by the four-phase assemblage prehnite+pumpellyite+epidote+chlorite systematically decreases with increasing metamorphic grade. Such a trend is the reverse of that proposed by Cho et al. (1986); this may be related to the higher in the Mt. Menzies area. The actinolite-forming reaction depends on the value of X Fe3+ in pumpellyite. If using a low value of Fe3+, 3.89 Pr(0.06)+0.48 Ep(0.26)+0.60 Chl+H2O=2.10 Pm (0.08)+0.17 Act+0.88 Qz is delineated. The number in parentheses stands for the X Fe3+value in Ca-Al silicates. On the other hand, replacing the X Fe3+ of 0.08 in pumpellyite with a higher X Fe3+ value (0.24) changes the reaction to 0.41 Pm+0.02 Chl+0.42 Qz=0.11 Pr+0.62 Ep+0.10 Act+H2O. The first (hydration) reaction forms pumpellyite and actinolite on the high-temperature side, whereas the second (dehydration) reaction consumes pumpellyite to form prehnite, epidote and actinolite. The former reaction seems to explain the textural relationship of Ca-Al silicates in the study area. However, actinolite-forming reaction changes to a different reaction depending on the compositions of the participating minerals, although in the other area even physical conditions may be similar to those in the study area. Chemographic analysis of phase relations in the PrA facies indicates that the appearance of prehnite depends strongly on the bulk FeO/MgO ratio: this may explain the rarity of prehnite in common metabasites in spite of the expected dominant occurrence in the conventional pseudo-quaternary (Ca-Al-Fe3+-FM) system. An increasing FeO/MgO ratio stabilizes the Pr+Act assemblage and reduces the stability of the Pm+Act one. Therefore, the definition of pumpellyite-actinolite facies should include not only Pm+Act but also the absence of Pr+Act assemblages. In addition to the possible role of high (Cho and Liou 1987) and/or high to mask the appearance of prehnite, the effect of the FeO/MgO ratio is emphasized.  相似文献   

10.
Near-liquidus phase relationships of a spinel lherzolite-bearing olivine melilitite from Tasmania were investigated over a P, T range with varying , , and . At 30 kb under MH-buffered conditions, systematic changes of liquidus phases occur with increasing ( = CO2/CO2 +H2O+olivine melilitite). Olivine is the liquidus phase in the presence of H2O alone and is joined by clinopyroxene at low . Increasing eliminates olivine and clinopyroxene becomes the only liquidus phase. Further addition of CO2 brings garnet+orthopyroxene onto the liquidus together with clinopyroxene, which disappears with even higher CO2. The same systematic changes appear to hold at higher and lower pressures also, only that the phase boundaries are shifted to different . The field with olivine- +clinopyroxene becomes stable to higher with lower pressure and approaches most closely the field with garnet+orthopyroxene+clinopyroxene at about 27 kb, 1160 °C, 0.08 and 0.2 (i.e., 6–7% CO2+ 7–8% H2O). Olivine does not coexist with garnet+orthopyroxene+clinopyroxene under these MH-buffered conditions. Lower oxygen fugacities do not increase the stability of olivine to higher and do not change the phase relationships and liquidus temperatures drastically. Thus, it is inferred that olivine melilitite 2927 originates as a 5% melt (inferred from K2 O and P2O5 content) from a pyrolite source at about 27kb, 1160 dg with about 6–7% CO2 and 7–8% H2O dissolved in the melt. The highly undersaturated character of the melt and the inability to find olivine together with garnet and orthopyroxene on the liquidus (in spite of the close approach of the respective liquidus fields) can be explained by reaction relationships of olivine and clinopyroxene with orthopyroxene, garnet and melt in the presence of CO2.  相似文献   

11.
Calcite in schists of the metamorphic complex at Naxos is depleted both in 13C and in 18O with respect to massive marbles. This effect is attributed to isotope exchange with circulating CO2-rich fluids, which had an >0.5 according to fluid inclusions. The carbon isotopic composition of the calcites is close to equilibrium with fluid inclusion CO2 at metamorphic temperatures. Mass balance calculations assuming initial 13C values of 0 for calcite and –5 for the fluid, give integrated fluid/rock volume ratios between 0.1 and 2.0. Such high fluid/rock ratios are supported by observations on the distribution of CO2/H2O ratios of fluid inclusions, carbon isotopic compositions of fluid inclusion CO2 and oxygen isotope systematics of silicates.  相似文献   

12.
The miscibility gap between rhodonite and bustamite has been experimentally determined at temperatures between 600° and 1,100° C. For temperatures below 700° C the resulting limbs have been extrapolated on T-X-diagram as at such low temperatures equilibrium could not be attained. According to microprobe analyses for the natural assemblages of Ravinella di Sotto (Ivrea zone, Italy) and Broken Hill (N.S.W., Australia) equilibrium temperatures are estimated to be at 500° to 550° C. However these assemblages are thought to have re-equilibrated during cooling and the compositions of equilibrium assemblages are also pressure dependent. According to experiments and to molar volume data the rhodonite structure is stabilized by high pressures whereas bustamite by high temperatures. Based on available experimental results and natural data an isobaric T-X Ca diagram and two isotherm -X Ca diagrams (for T=400° C and T=600° C) are given.  相似文献   

13.
An extensive humite‐bearing marble horizon within a supracrustal sequence at Ambasamudram, southern India, was studied using petrological and stable isotopic techniques to define its metamorphic history and fluid characteristics. At peak metamorphic temperatures of 775±73°C, based on calcite‐graphite carbon isotope thermometry, the mineral assemblages suggest layer‐by‐layer control of fluid compositions. Clinohumite + calcite‐bearing assemblages suggest XCO2 < 0.4 (at 700°C and 5 kbar), calcite + forsterite + K‐feldspar‐bearing assemblages suggest XCO2>0.9 (at 790°C); and local wollastonite + scapolite + grossular‐bearing zones formed at XCO2 of c. 0.3. Retrograde reaction textures such as scapolite + quartz symplectites after feldspar and calcite and replacement of dolomite + diopside or tremolite+dolomite after calcite+forsterite or calcite+clinohumite are indicative of retrogression under high XCO2 conditions. Calcite preserves late Proterozoic carbon and oxygen isotopic signatures and the marble lacks evidence for extensive retrograde fluid infiltration, while during prograde metamorphism the possible infiltration of aqueous fluids did not produce significant isotopic resetting. Isotopic zonation of calcite and graphite grains was likely produced by localized CO2 fluid infiltration during retrogression. Contrary to the widespread occurrence of humite‐marbles related to retrograde aqueous fluid infiltration, the Ambasamudram humite‐marbles record a prograde‐to‐peak metamorphic humite formation and retrogression under conditions of low XH2O.  相似文献   

14.
In the 6 component system CaO-MgO-Al2O3-SiO2-CO2-H2 with 9 solid phases (quartz, plagioclase, epidote, tremolite, talc, chlorite, magnesite, calcite, dolomite) and a fluid phase, all 17 possible fluid-absent reactions have been set up and balanced. Using molar entropy and volume data for the solid phases, these reactions are arranged in P-T space about the 8 possible fluid-absent invariant points after the method of Schreinemakers. Field observations in Ordovician greenschist facies basic volcanics at Sofala N.S.W., indicate that neither talc+epidote nor magnesite+calcite are stable under the conditions of metamorphism. Assuming these conditions to apply to the theoretical study here, the fluid-absent invariant points are arranged in a relative fashion with fluid-absent reactions subdividing P-T space into smaller areas.A scheme which permits a fluid of composition (i.e. a fluid containing CO2 and H2O together with other components), is modeled by treating H2O as a mobile component independent of CO2, and by allowing values that lie off the locus of binary H2O-CO2. Taking into account that neither talc+epidote nor magnesite +calcite is to be permitted, the fluid scheme is used to set up and balance all 39 possible fluid-bearing reactions. These are then arranged about 20 valid fluid-bearing invariant points in space after the method of Korzhinskii and Sehreinemakers.A characteristic solid phase assemblage is defined for each P-T area using chemographic relations inherent from the fluid-absent boundary reactions. The fluid-bearing invariant points that have a solid assemblage compatible with the characteristic assemblage in a particular P-T area are stable within the P-T regime of that area. When these stable fluidbearing invariant points are arranged in a relative fashion in space, they outline a fluid grid which can be used to study the possible effects of local variation in X fluid over the particular P-T regime.Symbols Used U chemical potential - S entropy - V molar volume - n coefficient of a phase in a reaction - X mole fraction - T temperature - P pressure - F number of degrees of freedom - C number of components - p number of phases - s solid - slope of reaction - 1 quartz - 2 plagioclase - 3 epidote - 4 tremolite - 5 talc - 6 chlorite - 7 dolomite - 8 magnesite - 9 calcite  相似文献   

15.
Calculated phase equilibria among the minerals amphibole, chlorite, clinopyroxene, orthopyroxene, olivine, dolomite, magnesite, serpentine, brucite, calcite, quartz and fluid are presented for the system CaO–FeO–MgO–Al2O3–SiO2–CO2–H2O (CaF-MASCH), with chlorite and H2O–CO2 fluid in excess and for a temperature range of 440°C–600°C and low pressures. The minerals chosen in CaFMASCH represent the great majority of phases encountered in metamorphosed ultramafic rocks. The changes in mineral compositions in terms of FeMg-1 and (Mg, Fe)SiAl-1Al-1 are related to variations in the intensive parameters. For example, equilibria at high in the presence of chlorite involve minerals which are relatively aluminous compared with those at low . The calculated invariant, univariant and divariant equilibria are compared with naturally-occurring greenschist and amphibolite facies ultramafic mineral assemblages. The correspondence of sequences of mineral assemblages and the compositions of the minerals in the assemblages is very good.  相似文献   

16.
Natural humite minerals and synthetic fluoro-humites, ideally described as nMg2SiO4 · Mg(OH,F)2 (1<n<4), were investigated by using electron diffraction and imaging techniques. In clinohumite (n=4) and humite (n=3) irregularities in lattice spacings were observed parallel to (001). These were identified, using high resolution lattice images, as upper member lamellae in which n was always even (i.e., n=6, 8, 10 etc.). In fluoroclinohumite the higher members were sometimes perfectly ordered, giving rise to superstructures with relatively large c axes. These supercells always consisted of several consecutive unit cells of clinohumite (n=4) followed by a unit cell of the n=6 member; the largest observed had a d (001) spacing of 169 Å. It was also found that coherent intergrowths of massive portions of humite (n=3) and chondrodite (n=2) often occurred.  相似文献   

17.
The volume of fluid and amount of heat involved in a portion of a metamorphic event around three synmetamorphic granitic stocks has been quantitatively estimated using mineral composition and modal data from carbonate rocks. Values of volumetric fluid-rock ratios range, with respect to a reference zoisite isograd, from 0.001 to 0.434. Amounts of heat involved range from –25 to 134 cal/cm3 rock. Contours of constant fluid-rock ratio and of constant amount of heat are generally concentric about the granitic stocks indicating that the stocks are foci of high heat and fluid fluxes during metamorphism. In addition, contours of fluid-rock ratios and amount of heat outline NE-SW-trending channelways of high fluid and heat fluxes that alternate with regions of lower fluid and heat fluxes. The NE-SW-trending vertical bedding and schistosity in the area — of premetamorphic origin — probably constrained fluid and heat transfer to occur preferentially in NE-SW directions. Large values of heat involved in metamorphism are strongly correlated with large fluid-rock ratios, suggesting that fluids are an important carrier of heat during metamorphism. Configurations of mapped isograds in the area mimic the patterns of contours of constant fluid-rock ratio and of heat content, indicating that configurations of isograds may contain useful information about regional patterns of heat and fluid transfer during metamorphism.Notation T Last temperature recorded by metacarbonate rocks (°C) - P Lithostatic pressure (bars) - Pi Partial pressure of component i (bars) - of last fluid in equilibrium with carbonate rocks during metamorphism - R 1.987 cal/bar-degree - K s Activity constant for an assemblage of solid mineral phases - In Natural logarithm - c v Volumetric heat capacity (cal/cm3-degree) - Q Heat added to or subtracted from a rock during metamorphism in the zoisite zone (kcal/100 cm3 rock; cal/cm3 rock) - Q{ibrxn} Heat added to or subtracted from a rock due to mineral reactions during metamorphism in the zoisite zone (kcal/100 cm3 rock; cal/cm3 rock) - Std. Dev. Standard Deviation - Average of fluid in equilibrium with carbonate rocks during their metamorphism in the zoisite zone - of fluid in equilibrium with carbonate rocks at the zoisite isograd - T Temperature at the zoisite isograd (°C) - X i,j Mole fraction of component i in phase j - H i Molar enthalpy of reaction i at 0 bars pressure - ¯V i Change of molar volume due to reaction ii - i Measure of progress of reaction i - V Change in rock volume due to fluid-rock reactions - iV Initial rock volume before metamorphism within the zoisite zone - ¯V s,i Change in molar volume of solid minerals due to reaction i Component notation an CaAl2Si2O8 Phase notation Pl Plagioclase - Am Amphibole - Cc Calcite - Qz Quartz - Di Diopside - Zo Zoisite - Ga Garnet - Bi Biotite - Kf Microcline - Mu Muscovite  相似文献   

18.
In gravel-bedded streams where bed material of a tributary differs distinctly in lithology from that of the main stream, rock-type percentages can be used to estimate bed-load contributions of the two streams. The rock type that shows the greatest difference in abundance between the two streams is selected as the indicator lithology. Percentages of this lithology are estimated in both the main stream and tributary stream above their junction, and also in the main stream at a distance sufficiently downstream from the junction to allow complete mixing. The fraction of bed load contributed by the main stream, p,is estimated by ,where is an estimate of the proportion of indicator rock fragments in the bed of the main stream above the junction, is an estimate of the proportion in the bed of the tributary above the junction, and is an estimate of the proportion in the bed of the main stream below the junction. The variance of is obtained as var ( )= [p1q1(pr – p2)2/n(p1 – p2)4] + [p2q2(pr – p1)2/n(p1 – p2)4] + [prqr/n(p1 – p2)2].Although no estimate of actual quantity of bed load is provided, the indicator rock technique supplies data that can serve as a check on data obtained by means of empirical formulas or actual transport measurements.  相似文献   

19.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

20.
The positions of the liquidi and the near-liquidus phases of olivine-melilitite+CO2 have been determined under MH-buffered and furnace-buffered conditions up to 40 kb. It is found that CO2 alone lowers the liquidus compared to dry conditions, yet its influence is minor compared to H2O. The major role of CO2 is to favour the growth of orthopyroxene and garnet over that of olivine at least at high pressures. CO2-contents of glasses from experiments just above the liquidus (MH-buffered) were determined as 5.1 % at 10kb; 7.5 % at 20kb, 9.3 % at 30kb and 10–11 % (estimated) at 40 kb. Experiments on (pyrolite –40 % olivine)+H2O+CO2 show that CO2 occurs under mantle conditions as carbonate under subsolidus conditions and dissolved in a melt above the solidus. At 30kb, the solidus lies between 1,000 ° C and 1,050 ° C for vapour-saturated conditions, at and at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号