首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The nature of the near-liquidus phases for a mantle-derived olivine melilitite composition have been determined at high pressure under dry conditions and with various water contents. Olivine and clinopyroxene occur on or near the liquidus and there are no conditions where orthopyroxene crystallizes in equilibrium with the olivine melilitite. We have determined the effect on the liquidus temperature and liquidus phases of substituting CO2 for H2O on a mole for mole basis at 30 kb, using olivine melilitite + 20 wt% H2O at = 0 and = (CO2)/(H2+CO2) (mole fraction) = 0.25, 0.5, 0.75 and 1.0 (i.e. olivine melilitite + 38 wt% CO2). Experiments were buffered by the MH or NNO buffers. At 30 kb, CO2 is only slightly less soluble than water for <0.5 as judged by the slight increase in liquidus temperature on mole-for-mole substitution of CO2 for H2O and at 30 kb, 1200° C, = = 0.5 the olivine melilitite contains 8.8 wt% H2O and 21 wt% CO2 in solution. For 1 the CO2 saturated liquidus is depressed 70 ° C below the anhydrous liquidus and the magma dissolves approx. 17% CO2 at 30kb, 1400 ° C, 1, 0. Infrared spectra of quenched glasses have absorption bands characteristic of CO 3 = and OH- molecules and no evidence for HCO 3 - . The effect of CO 3 = molecules dissolved in the olivine melilitite at high pressure is to suppress the near-liquidus crystallization of olivine and clinopyroxene and bring orthopyroxene and garnet on to the liquidus. We infer that olivine melilitite magmas may be derived by equilibrium partial melting (<5%) of pyrolite at 30 kb, 1150–1200 ° C, provided that both H2O and CO2 are present in the source region in minor amounts. Preferred conditions are 0< <0.5, 0.5< <1, and at low oxygen fugacities (相似文献   

2.
The phenocryst assemblage of cummingtonite, orthopyroxene, quartz, titanomagnetite and ilmenite in rhyolites of New Zealand has been used to calculate P total and . The values of P total and depend strongly upon whether an ideal mixing, or an ordered, model is used for the solid-solutions, but in both cases P total.The rhyolite magma contained over 9 per cent water (by weight) when the cummingtonite phenocrysts precipitated, and possibly as much as 12 per cent, so that it is surprising that one of these rhyolites is a coherent lava. The calculated values of P total and are very sensitive to uncertainty in both the composition of the solid-solutions and temperature. Calculations show that >0.7–0.8 P total for cummingtonite to precipitate in rhyolites, and that iron-rich olivine and cummingtonite could only exist in rhyolites over a small temperature range at a pressure near 5 kilobars. Hornblende phenocrysts co-existing with fayalitic olivine in rhyolites accordingly have a very low activity of Mg7Si8O22(OH)2.  相似文献   

3.
The mineralogy, petrology and geochemistry of the Proterozoic Harney Peak Granite, Black Hills, South Dakota, were examined in view of experimentally determined phase equilibria applicable to granitic systems in order to place constraints on the progenesis of peraluminous leucogranites and commonly associated rare-element pegmatites. The granite was emplaced at 3–4 kbar as multiple sills and dikes into quartz-mica schists at the culmination of a regional high-temperature, low-pressure metamorphic event. Principally along the periphery of the main pluton and in satellite intrusions, the sills segregated into granite-pegmatite couplets. The major minerals include quartz, K-feldspar, sodic plagioclase and muscovite. Biotite-{Mg No. [Molar MgO/(MgO+FeO)]=0.32-0.38} is the predominant ferromagnesian mineral in the granite's core, whereas at the periphery of the main pluton and in the satellite intrusions tourmaline (Mg No.=0.18–0.48) is the dominant ferromagnesian phase. Almandine-spessartine garnet is also found in the outer intrusions. There is virtually a complete overlap in the wide concentration ranges of SiO2, CaO, MgO, FeO, Sr, Zr, W of the biotite- and tourmaline-bearing granite suites with no discernable differentiation trends on Harker diagrams, precluding the derivation of one suite from the other by differentiation following emplacement. This is consistent with the oxygen isotope compositions which are 11.5 ± 0.6 for the biotite granites and 13.2 ± 0.8 for the tourmaline granites, suggesting derivation from different sources. The concentrations of TiO2 and possibly Ba are higher and of MnO and B are lower in the biotite granites. The normative Orthoclase/Albite ratio is extremely variable ranging from 0.26 to 1.65 in the biotite granites to 0.01–1.75 in the tourmaline granites. Very few sample compositions fall near the high-pressure, watersaturated haplogranite minima-eutectic trend, indicating that the granites for the most part are not minimum melts generated under conditions with =1. Instead, most biotite granites are more potassic than the water-saturated minima and eutectics and in analogy with experimentally produced granitic melts, they are best explained by melting at 6 kbar, <1 and temperatures 800°C. Such high temperatures are also indicated by oxygen isotope equilibration among the constituent minerals (Nabelek et al. 1992). Several of the tourmaline granite samples contain virtually no K-feldspar and have oxygen isotope equilibration temperatures 716–775°C. Therefore, they must represent high-temperature accumulations of liquidus minerals crystallized under equilibrium conditions from melts more sodic than the water-saturated haplogranite minima or during fractionation of intruded melts into granite-pegmatite couplets accompanied by volatile-aided differentiation of the alkali elements. The indicated high temperatures, <1, the relatively high TiO2 and Ba concentrations and the relatively low values of the biotite granites suggest that they were generated by high-extent, biotite-dehydration melting of an immature Archean metasedimentary source. The ascent of the hot melts may have triggered low-extent, muscovite-dehydration melting of schists higher in the crust producing the high-B, low-Ti melts comprising the periphery of the main pluton and the satellite intrusions. Alternatively, the different granite types may be the result of melting of a vertical section of the crust in response to the ascent of a thermal pulse, with the low- biotite granites generated at a deeper, hotter region and the high- tourmaline granites at a higher, cooler region of the crust. The low-Ti and high-B concentrations in the high- melts resulted in the crystallization of tourmaline rather than biotite, which promoted the observed differentiation of the melts into the granitic and pegmatitic layers found along the periphery of the main pluton and the satellite intrusions.  相似文献   

4.
Redox states of lithospheric and asthenospheric upper mantle   总被引:31,自引:7,他引:24  
The oxidation state of lithospheric upper mantle is heterogeneous on a scale of at least four log units. Oxygen fugacities ( ) relative to the FMQ buffer using the olivine-orthopyroxene-spinel equilibrium range from about FMQ-3 to FMQ+1. Isolated samples from cratonic Archaean lithosphere may plot as low as FMQ-5. In shallow Proterozoic and Phanerozoic lithosphere, the relative is predominantly controlled by sliding Fe3+-Fe2+ equilibria. Spinel peridotite xenoliths in continental basalts follow a trend of increasing with increasing refractoriness, to a relative well above graphite stability. This suggests that any relative reduction in lithospheric upper mantle that may occur as a result of stripping lithosphere of its basaltic component is overprinted by later metasomatism and relative oxidation. With increasing pressure and depth in lithosphere, elemental carbon becomes progressively refractory and carbon-bearing equilibria more important for control. The solubility of carbon in H2O-rich fluid (and presumably in H2O-rich small-degree melts) under the P,T conditions of Archaean lithosphere is about an order of magnitude lower than in shallow modern lithosphere, indicating that high-pressure metasomatism may take place under carbon-saturated conditions. The maximum in deep Archaen lithosphere must be constrained by equilibria such as EMOG/D. If the marked chemical depletion and the orthopyroxene-rich nature of Archaean lithospheric xenoliths is caused by carbonatite (as opposed to komatiite) melt segregation, as suggested here, then a realistic lower limit may be given by the H2O +C=CH4+O2 (C-H2O) equilibrium. Below C –H2O a fluid becomes CH4 rather than CO2-bearing and carbonatitic melt presumably unstable. The actual in deep Archaean lithosphere is then a function of the activities of CO2 and MgCO3. Basaltic melts are more oxidized than samples from lithospheric upper mantle. Mid-ocean ridge (MORB) and ocean-island basalts (OIB) range between FMQ-1 (N-MORB) and about FMQ +2 (OIB). The most oxidized basaltic melts are primitive island-arc basalts (IAB) that may fall above FMQ+3. If basalts are accurate probes of their mantle sources, then asthenospheric upper mantle is more oxidized than lithosphere. However, there is a wide range of processes that may alter melt relative to that of the mantle source. These include partial melting, melt segregation, shifts in Fe3+/Fe2+ melt ratios upon decompression, oxygen exchange with ambient mantle during ascent, and low-pressure volatile degassing. Degassing is not very effective in causing large-scale and uniform shifts, while the elimination of buffering equilibria during partial melting is. Upwelling graphite-bearing asthenosphere will decompress along -pressure paths approximately parallel to the graphite saturation surface, involving reduction relative to FMQ. The relative will be constrained to below the CCO equilibrium and will be a function of . Upwelling asthenosphere whose graphite content has been exhausted by partial melting, or melts that have segregated and chemically decoupled from a graphite-bearing residuum will decompress along -decompression paths controlled by continuous Fe3+-Fe2+ solid-melt equilibria. These equilibria will involve increases in relative to the graphite saturation surface and relative to FMQ. Melts that finally segregate from that source and erupt on the earth's surface may then be significantly more oxidized than their mantle sources at depth prior to partial melting. The extent of melt oxidation relative to the mantle source may be directly proportional to the depth of graphite exhaustion in the mantle source.  相似文献   

5.
Zusammenfassung Im Älteren Steinsalz von Reyershausen bei Göttingen wurde eine neue Veatchit-Varietät gefunden mita 0 = 6,721 Å,b 0 = 20,81 Å,c 0 = 6,647 Å, = 119° 4; Raumgruppe oderP21,Z = 4[(Sr, Ca) O · 3 B2O3 · 2 H2O]. (010) ist die Ebene der vollkommenen Spalt-barkeit. Die Polymorphie der Veatehit-Minerale wird geometrisch durch geringfügige Deformationen der rhombischen Raumgruppe (bzw.A21 a m) erklärt.Der neue Vertreter wirdp-Veatehit (mit einfach-primitivem Raumgitter) genannt im Unterschied zum Original-Veatehit, der in die Raumgruppe gehört und dessen Symametrieebene senkrecht auf der vollkommenen Spaltebene steht.  相似文献   

6.
Near-liquidus phase relationships of a spinel lherzolite-bearing olivine melilitite from Tasmania were investigated over a P, T range with varying , , and . At 30 kb under MH-buffered conditions, systematic changes of liquidus phases occur with increasing ( = CO2/CO2 +H2O+olivine melilitite). Olivine is the liquidus phase in the presence of H2O alone and is joined by clinopyroxene at low . Increasing eliminates olivine and clinopyroxene becomes the only liquidus phase. Further addition of CO2 brings garnet+orthopyroxene onto the liquidus together with clinopyroxene, which disappears with even higher CO2. The same systematic changes appear to hold at higher and lower pressures also, only that the phase boundaries are shifted to different . The field with olivine- +clinopyroxene becomes stable to higher with lower pressure and approaches most closely the field with garnet+orthopyroxene+clinopyroxene at about 27 kb, 1160 °C, 0.08 and 0.2 (i.e., 6–7% CO2+ 7–8% H2O). Olivine does not coexist with garnet+orthopyroxene+clinopyroxene under these MH-buffered conditions. Lower oxygen fugacities do not increase the stability of olivine to higher and do not change the phase relationships and liquidus temperatures drastically. Thus, it is inferred that olivine melilitite 2927 originates as a 5% melt (inferred from K2 O and P2O5 content) from a pyrolite source at about 27kb, 1160 dg with about 6–7% CO2 and 7–8% H2O dissolved in the melt. The highly undersaturated character of the melt and the inability to find olivine together with garnet and orthopyroxene on the liquidus (in spite of the close approach of the respective liquidus fields) can be explained by reaction relationships of olivine and clinopyroxene with orthopyroxene, garnet and melt in the presence of CO2.  相似文献   

7.
The partition of Ni between olivine and monosulfide-oxide liquid has been investigated at 1300–1395° C, =10–8-9–10–6.8, and =10–2.0–10–0.9, over the composition range 20–79 mol. % NiS. The product olivine compositions varied from Fo98 to Fo59 and from 0.06 to 3.11 wt% NiO. The metal/sulfur ratio of the sulfide-oxide liquid increases with increase in , decrease in , and increase in NiS content. The Ni/Fe exchange reaction has been perfectly reversed using natural olivine and pure forsterite as starting materials. The FeO and NiO contents of olivine from runs equilibrated at the same and form isobaric distributions with NiS content, which, to a first approximation, are dependent at constant temperature and total pressure on a variable term, –0.5 log ( / ). The Ni/Fe distribution coefficient (K D3) exhibits only a weak decrease from 35 to 29 with increase in from the IW buffer to close to the FMQ buffer. At values higher than FMQ, the sulfide-oxide liquid has the approximate composition (Ni,Fe)3±xS2K D358. The present K D3 vs O/(S+O) data define a trend which extrapolates to K D320 at 10 wt% oxygen in the sulfide-oxide liquid. The compositions of olivine and Ni-Cu sulfides associated with early-magmatic basic rocks and komatiites are consistent, at 1400° C, with a value of -log ( / ) of about 7.7, which is equivalent to 0.0 wt% oxygen in the hypothesized immiscible sulfide-oxide liquid. Therefore, K D3 would not be reduced significantly from the 30 to 35 range for sulfide-oxide liquids with low oxygen contents.  相似文献   

8.
To investigate the point defect chemistry and the kinetic properties of manganese olivine Mn2SiO4, electrical conductivity () of single crystals was measured along either the [100] or the [010] direction. The experiments were carried out at temperatures T=850–1200 °C and oxygen fugacities atm under both Mn oxide (MO) buffered and MnSiO3 (MS) buffered conditions. Under the same thermodynamic conditions, charge transport along [100] is 2.5–3.0 times faster than along [010]. At high oxygen fugacities, the electrical conductivity of samples buffered against MS is 1.6 times larger than that of samples buffered against MO; while at low oxygen fugacities, the electrical conductivity is nearly identical for the two buffer cases. The dependencies of electrical conductivity on oxygen fugacity and temperature are essentially the same for conduction along the [100] and [010] directions, as well as for samples coexisting with a solid-state buffer of either MO or MS. Hence, it is proposed that the same conduction mechanisms operate for samples of either orientation in contact with either solid-state buffer.The electrical conductivity data lie on concave upward curves on a log-log plot of vs , giving rise to two regimes with different oxygen fugacity exponents. In the low- regime , the exponent, m, is 0, the MnSiO3-activity exponent, q, is 0, and the activation energy, Q, is 45 kJ/mol. In the high regime 10^{ - 7} {\text{atm}}} \right)$$ " align="middle" border="0"> , m=1/6, q=1/4–1/3, and Q=45 and 200 kJ/mol for T<1100 °c=" and=">T>1100 °C, respectively.  相似文献   

9.
Diffusion rates of18O tracer in quartz ( c, 1 Kb H2O) and Amelia albite ( 001, 2 Kb H2O) have been measured, using Secondary Ion Mass Spectrometry (SIMS). A new technique involving hydrothermal deposition of labelled materials has removed the possibility of pressure solution-reprecipitation processes adversely affecting the experiments. Reported diffusion constants are:-quartz ( c), ,Q=98±7 KJ mol–1 (600–825° C, 1 Kb); Amelia albite ( 001), ,Q=85±7 KJ mol–1, (400–600° C, 2 Kb). Measured quartz18O diffusivities decrease discontinuously at the- transition, reflecting strong structural influences. The reported albite data agree with previously recorded studies, but-quartz data indicate significantly lower activation energies. Possible causes of this discrepancy, and some geological consequences, are noted.  相似文献   

10.
Zusammenfassung Die chemische Analyse des neuen Minerals Johillerit mit der Elektronenmikrosonde ergab: Na2O 5,4, MgO 18,3, ZnO 5,4, CuO 15,8 und As2O5 55,8, Summe 100.7%. Aus diesem Ergebnis wurde die idealisierte Formel Na(Mg, Zn)3 Cu(AsO4)3 abgeleitet. Johillerit ist monoklin mit der RaumgruppeC2/c. Die Gitterkonstanten sind:a=11,870 (3),b=12,755 (3),c=6,770 (2) , =113,42 (2)°,Z=4. Die stärksten Linien des Pulverdiagramms sind: 4,06 (5) (22 ), 3,50 (4) (310), 3,25 (8) (11 ), 2,75 (10) (330, 240), 2,64 (5) (311, 13 , 40 ), 1,952 (4) (13 , 35 ), 1,682 (4) (20 , 460), 1,660 (5) (40 , 71 , 550, 64 ), 1,522 (4) (442, 153, 13 ). Es bestehen enge strukturelle Beziehungen zwischen Johillerit und O'Danielit, Na(Zn, Mg)3H2(AsO4)3, sowie einigen synthetischen. Verbindungen.Johillerit ist violett durchscheinend. Die Spaltbarkeit nach {010} ist ausgezeichnet und nach {100} und {001} gut.H (Mohs)3.D=4,15 undD X =4,21 g·cm–3. Das Mineral ist optisch zweiachsig positiv, 2V80 (5)°. Die Werte der Lichtbrechung sindn =1,715 (4),n =1,743 (4) undn =1,783 (4). Die Auslöschung istn b und auf (010)n c16°. Johillerit ist stark pleochroitisch mit den AchsenfarbenX=violett-rot,Y = blauviolett undZ = grünblau. Das neue Mineral kommt in radialstrahligen Massen gemeinsam mit kupferhaltigem Adamin und Konichalcit in zersetzem Kupfererz von Tsumeb, Namibia, vor. Die Benennung erfolgte nach Prof. Dr.J.-E. Hiller (1911–1972).
Johillerite, Na(Mg, Zn) 3 Cu(AsO 4 ) 3 , a new mineral from Tsumeb, Namibia
Summary Electron microprobe analysis of the new mineral johillerite gave Na2O 5.4, MgO 18.3, ZnO 5.4, CuO 15.8, and As2O5 55.8, total 100.7%. From this result, the ideal formula is given as Na(Mg, Zn)3 Cu(AsO4)3. Johillerite crystallizes monoclinic,C2/c. The unit cell dimensions are:a=11.870(3),b=12.755 (3),c=6.770 (2) , =113.42 (2)°,Z=4. The strongest lines on the X-ray powder diffraction pattern are: 4,06 (5) (22 ), 3,50 (4) (310), 3,25 (8) (11 ), 2,75 (10) (330, 240), 2,64 (5) (311, 13 , 40 ), 1,952 (4) (13 , 35 ), 1,682 (4) (20 , 460), 1,660 (5) (40 , 71 , 550, 64 ), 1,522 (4) (442, 153, 13 ). There is a close relationship between johillerite, o'danielite, Na(Zn, Mg)3H2(AsO4)3, and some synthetic compounds. Johillerite is violet in colour, transparent. Cleavage is {010} perfect, {100} and {001} good.H (Mohs)3.D=4.15 andD X =4.21 g·cm–3. The mineral is optically biaxial positive, 2V80 (5)°. The refractive indices are:n =1.715 (4),n =1.743 (4),n =1.783 (4). The extinction isn b and on (010)n c16°. Strongly pleochroic with axial coloursX=violet-red,Y=bluish violet andZ=greenish blue. The new mineral was found in radiated masses together with cuprian adamite and conichalcite in an oxidized copper ore from Tsumeb, Namibia. It is named in honour of Prof. Dr.J.-E. Hiller (1911–1972).


Mit 1 Abbildung  相似文献   

11.
In the Rogers Pass area of British Columbia the almandine garnet isograd results from a reaction of the form: 5.31 ferroan-dolomite+8.75 paragonite+4.80 pyrrhotite+3.57 albite+16.83 quartz+1.97 O2=1.00 garnet+16.44 andesine+1.53 chlorite+2.40 S2+1.90 H2O+10.62 CO2. The coefficients of this reaction are quite sensitive to the Mn content of ferroan-dolomite.Experimental data applied to mineral compositions present at the isograd, permits calculation of two intersecting P, T equilibrium curves. P=29088–39.583 T is obtained for the sub-system paragonite-margarite (solid-solution), plagioclase, quartz, ferroan-dolomite, and P=28.247 T–14126 is obtained for the sub-system epidote, quartz, garnet, plagioclase. These equations yield P=3898 bars and T=638° K (365° C). These values are consistent with the FeS content of sphalerite in the assemblage pyrite, pyrrhotite, sphalerite and with other estimates for the area.At these values of P and T the composition of the fluid phase in equilibrium with graphite in the system C-O-H-S during the formation of garnet is estimated as: bars, bars, bars, bars, bars, bars, bars, bars, , bars, bars.  相似文献   

12.
Zusammenfassung Emmonsit kristallisiert triklin, RaumgruppeP , Gitterkonstanten:a 0=7,90 Å,b 0=8,00 Å,c 0=7,62 Å, =96o44, =95o 0, =84o 28,Z=2. Der Strukturtyp wurde aus 3-dimensionalen photographischen Röntgendaten ermittelt. Die Eisenatome werden je von 6 Sauerstoffen verzerrt oktaedrisch koordiniert. Jedes Telluratom wird von 3 Sauerstoffen in einem Abstand <2,0 Å umgeben. Ein vierter Sauerstoff hat bezüglich dieser drei einen um etwa 25–35% größeren Abstand, so daß jedes Telluratom im weiteren Sinne eine (3+1)-Koordination aufweist.
The structure type of emmonsite, {Fe2[TeO3]3·H2O}·xxH2O (x=0–1)
Summary Emmonsite is triclinic with space groupP , and lattice constantsa 0=7.90 Å,b 0=8.00 Å,c 0=7.62 Å, =96o 44, =95o 0, =840 28,Z=2. The structure type is derived from 3-dimensional photographic X-ray data. The iron atoms are coordinated by six oxygens in the form of a distorted octahedron. Each tellurium atom is coordinated to 3 oxygens at a distance <2.0 Å. Compared with these 3 Te–O distance the distance of a fourth oxygen is only 25 to 35% greater; therefore each tellurium atom has a (3+1)-coordination of oxygens.


Mit 2 Abbildungen  相似文献   

13.
Single crystal Raman spectra of pyrite-type RuS2, RuSe2, OsS2, OsSe2, PtP2, and PtAs2 are presented and discussed with reference to the energies of the X-X stretching modes x-x (A g, F g) and the X2 librations (E, 2Fg). The main results obtained are (i) strong Raman resonance effects, (ii) different sequences for x-x (A g) and (E g), i.e., R_{x_2 } $$ " align="middle" border="0"> for PtP2 and PtAs2 and R_{x_2 } $$ " align="middle" border="0"> for OsS2, owing to the interplay of intraionic and interionic lattice forces, (iii) greater strengths for the intraionic P-P and As-As bonds compared to the S-S and Se-Se bonds, respectively, and (iv) a strong influegnce of the metal ions on the strength of the X-X bonds.This is contribution LXI of a series of papers on lattice vibration spectra  相似文献   

14.
Water in microcrystalline quartz of volcanic origin: Agates   总被引:2,自引:0,他引:2  
Agates of volcanic origin, containing the different quartz species, fibrous, length-fast chalcedony (CH), granular fine quartz (FQ), and fibrous, length-slow, to lepidospheric quartzine (QN), have been investigated to evaluate possible relations between microstructure, i.e. crystallite size and texture, refractive indices, densities, contents of trace elements and of water, as well as dehydration behaviour. By means of near infrared spectroscopy, total water contents , could be differentiated quantitatively into contents of molecular water, , and silanole-group water, . Despite the low total water contents of the agates studied ( between 1 and 2 wt.%), near infrared spectroscopy results in reliable data on and .Wall-layering CH consists of fibrous quartz crystals and exhibits higher C-ratios, , than horizontally layered FQ which consists predominantly of granular quartz crystals (C CH=0.45±0.11 (N=6), C FQ=0.36±0.10 (N=4). This result is interpreted to be due to analogy with the behaviour of C-ratios in fluid phase-deposited opals-AN (hyalithe) and liquid phase-deposited opals-AG (non-crystalline opal) or -CT (common opal) (Langer and Flörke 1974).Translucent layers of CH show mostly lower refractive indices, when measured parallel than when measured perpendicular to the axes of the quartz fibers. The same is true for milky layers of CH. Crystallite sizes are smaller in the latter than in the former.For all samples studied, exists a positive correlation between at% (1/2Ca+1/2Mg+Na+K+Li) and at% (Al3++Fe3+). This indicates that at least parts of (A13++ Fe3+) substitute for Si in the quartz structure. The charge is balanced by incorporation of di- and mono-valent cations in structural interstices. When the quantity at % H+, as obtained from , is included into the sum at% (1/2 Me2++Me+), the above correlation is destroyed. This result could be indicative for a strong concentration of the Si-OH groups in the surface of the quartz microcrystallites.  相似文献   

15.
APL computer programs for the thermodynamic calculation of devolatilization and solid-solid equilibria operate using stored values for the molar volume and entropy of solids, the free energies of H2O and CO2, and the free energies of formation for 110 geologically-important phases. P-T-X CO 2 calculations of devolatilization equilibria can be made at pressures from 0.2 through 10 kb, and temperatures from 200 through 1,000° C. P-T-X calculations of solid-solid equilibria may be accomplished at pressures to 30 kb and temperatures to 1,000° C. Calculations can be extrapolations from experimental points, or direct calculations from thermochemical data alone. Options are available in these programs to consider effects of: real vs. ideal gas mixing, thermal expansion and compressibility, solid solution, fluid pressure differing from solid pressure, and uncertainties in high-temperature entropies.A collection of thermodynamic data programs accompanies the programs for calculating P-T-X CO 2 equilibria. Over a wide range of physical conditions, the data functions report free energies, entropies, fugacities of H2O and CO2, high temperature entropies of solids, and activities of components in H2O-CO2 mixtures.List of Symbols Activity of H2O and CO2 - Gf Free energy of formation of a phase from elements - Gr Free energy change of reaction - G r o Standard state free energy change of a reaction - Free energies of pure H2O and CO2 - H r o Standard state enthalpy change for a reaction - K Equilibrium constant - R Gas constant - S r o Standard state entropy change of reaction - S s o Standard state entropy change of solids in a reaction - Vs o Standard state volume change of a reaction - Vs o Standard state volume change of solids in a reaction - Mole fraction of H2O and CO2 - Activity coefficient of H2O and CO2  相似文献   

16.
Thermodynamic calculations, modified after Nicholls et al. (1971), which relate the activity of silica in a lava to the temperature and pressure conditions at which the lava could be in equilibrium with a mantle mineral assemblage, have been extended to H2O-bearing magmas by using published experimental data to derive the dependence of on the weight fraction of H2O dissolved in a magma. A petrogenetic grid has been calculated which gives the P-T conditions under which a magma with a given at its liquidus at 1 atm could equilibrate with a mantle mineral assemblage containing olivine (ol) and orthopyroxene (opx) for different amounts of H2O in the magma at its source. This grid is in good agreement with the results of experimental studies as summarized by Green (1971) and Brey and Green (1975). The results show that the pressure at which a given magma composition can equilibrate with ol + opx increases for increasing amounts of H2O dissolved in the magma at depth.In addition, experimental data have been used to calculate the effect of olivine crystallization and removal on the in the residual liquid to assess the effect of low-pressure differentiation on . The results show that if 20 % olivine is added to a basalt magma, its calculated pressure of equilibration with ol+opx increases by 4–5 kbar for a given temperature. The calculated effects of olivine removal and H2O addition on are reasonably consistent with the silicate mixing model of Burnham (1975).Thermodynamic calculations of this type may be useful for assessing the internal consistency of certain experimental data, and in extrapolating the results to other magma compositions. The application of these calculations to determining the possible depth of origin of natural lavas appears to be limited primarily by the difficulty in determining in a lava at its liquidus temperature.  相似文献   

17.
Iron chlorites with compositions intermediate between the two end-members daphnite (Fe5Al2Si3O10(OH)8) and pseudothuringite (Fe4Al4Si2O10(OH)8) were synthesized from mixtures of reagent chemicals. The polymorph with a 7 Å basal spacing initially crystallized from these mixtures at 300 °C and 2 kb after two weeks. Conversion to a 14 Å chlorite required a further 6 weeks at 550 °C. Shorter conversion times were required at higher water pressures. The products contained up to 20% impurities.The maximum equilibrium decomposition temperature for iron chlorite, approximately 550 °C at 2kb, is at an between assemblages (1) and (2) listed below. Synthetic iron chlorite will break down by various reactions with variable P, T, and fugacity of oxygen. For the composition FeAlSi = 523, the sequence of high temperature breakdown products with increasing traversing the magnetite field for P total = =2kb is: (1) corierite+ fayalite+hercynite; (2) cordierite+fay alite+magnetite; (3) cordierite+magnetite+quartz; (4) magnetite+mullite+quartz. Almandine should replace cordierite in assemblages (1) and (2) but it did not nucleate. The significance of the relationship between iron cordierite and almandine in this system is discussed.At water pressures from 4 to 8.5 kb and at the nickel-bunsite buffer, iron chlorite+quartz break down to iron gedrite+magnetite with temperature 550 to 640 °C along the curve. At temperatures 50 °C greater and along a parallel curve, almandine replaces iron gedrite. For on this buffer curve, almandine is unstable below approximately 4 kb for temperatures to approximately 750 °C.  相似文献   

18.
Multivariate statistical analyses have been extensively applied to geochemical measurements to analyze and aid interpretation of the data. Estimation of the covariance matrix of multivariate observations is the first task in multivariate analysis. However, geochemical data for the rare elements, especially Ag, Au, and platinum-group elements, usually contain observations the below detection limits. In particular, Instrumental Neutron Activation Analysis (INAA) for the rare elements produces multilevel and possibly extremely high detection limits depending on the sample weight. Traditionally, in applying multivariate analysis to such incomplete data, the observations below detection limits are first substituted, for example, each observation below the detection limit is replaced by a certain percentage of that limit, and then the standard statistical computer packages or techniques are used to obtain the analysis of the data. If a number of samples with observations below detection limits is small, or the detection limits are relatively near zero, the results may be reasonable and most geological interpretations or conclusions are probably valid. In this paper, a new method is proposed to estimate the covariance matrix from a dataset containing observations below multilevel detection limits by using the marginal maximum likelihood estimation (MMLE) method. For each pair of variables, sayY andZ whose observations containing below detection limits, the proposed method consists of three steps: (i) for each variable separately obtaining the marginal MLE for the means and the variances, , , , and forY andZ: (ii) defining new variables by and and lettingA=C+D andB=CD, and obtaining MLE for variances, and forA andB; (iii) estimating the correlation coefficient YZ by and the covariance YZ by . The procedure is illustrated by using a precious metal geochemical data set from the Fox River Sill, Manitoba, Canada.  相似文献   

19.
Garnet-pyroxene skarns were formed 90 m.y. B.P. in the Osgood Mountains at or near contacts of grandiorite with calcareous rocks of the Cambrian Preble Formation. The metasomatic replacement followed contact metamorphic recrystallization of the Preble. The sources, temperature, and variation in H2O/CO2 ratios of the metasomatic fluid are interpreted from 269 analyses of oxygen, carbon, hydrogen, and sulfur isotopes in whole rocks, minerals and inclusion fluids.Skarns formed in three mineralogical stages. Oxygen isotope data indicate that temperatures during the crystallization of garnet, pyroxene and wollastonite (Stage I) were least 550 ° C, and that the metasomatic fluid had an 0.035 in the massive skarns, and 0.12 in vein skarns up to 3 cm thick. Pore fluids in isotopic equilibrium with garnet in calc-silicate metamorphic rocks, on the other hand, had 0.15.The metasomatic fluids of Stage I were derived primarily from the crystallizing magma. The isotopic composition of magmatic water was 18O =+9.0, D= –30 to –45. Oxygen isotope temperatures of greater than 620 ° C were determined for the granodiorite. Isotopic and chemical equilibria between mineral surfaces and the metasomatic fluid were approached simultaneously in parts of the skarn several meters or more apart, while isotopic and chemical disequilibria (i.e. zoning) have been preserved between 20 to 40 m-thick zones in grandite garnet. More Fe-, or andradite-rich garnet crystallized in more H2O-rich C-O-H fluids ( 0.01) than present with grossularite-rich garnet ( 0.035).Stage II was marked by the replacement of garnet and pyroxene by quartz, amphibole, plagioclase, epidote, magnetite, and calcite. Many of the replacement reactions took place over a relatively narrow range in temperature (480–550 ° C), as indicated by 18O fractionations between quartz and amphibole. Meteoric water comprised 20 to 50% of the metasomatic fluid during Stage II.Calcite was formed along with pyrite, minor pyrrhotite, and chalcopyrite during Stage III, although the crystallization of pyrite and calcite had begun earlier, during Stages I and II, respectively. Carbon and sulfur isotope compositions of calcite and pyrite indicate a magmatic source for most of the C and S in the metasomatic fluids of Stage III. By the end of Stage III, meteoric water constituted as much as 100% of the metasomatic fluid. Minerals from grandiorite and skarn do not show large depletions in 18O because the oxygen isotope composition of the metasomatic fluid was buffered by the calcareous wall rocks and the grandiorite.Meteoric water in the vicinity of the Osgood Mountains during the Late Crectaceous (18Ocale. –14.0, D = – 107) was slightly enriched in 18O and D relative to present-day meteoric water (18O = 15.9, D = – 117)  相似文献   

20.
Aenigmatite, sodic pyroxene and arfvedsonite occur as interstitial minerals in metaluminous to weakly peralkaline syenite patches in alkali dolerite, Morotu, Sakhalin. Aenigmatite is zoned from Ca, Al, Fe3+-rich cores to Ti, Na, Mn, Si-rich rims reflecting the main substitutions Fe2+Ti4+Fe3+, NaSiCaAl and Mn2+Fe2+. Aenigmatite replaces aegirine and ilmenite supporting the existence of a no-oxide field in — T space. In one case aenigmatite has apparently formed by reaction between ilmenite and arfvedsonite. Titanian aegirine (up to 3.0 wt% TiO2) and Fe-chlorite may replace aenigmatite. Sodic pyroxene occurs as zoned crystals with cores of aegirine-augite rimmed by aegirine and in turn by pale green aegirine containing 93 mol% NaFe3+Si2O6. Additional substitution of the type NaAlCaFe2+ is indicated by significant amounts (up to 6 mol%) of NaAlSi2O6. Arfvedsonite is zoned with rims enriched in Na, Fe and depleted in Ca which parallels the variation of these elements in the sodic pyroxenes.The high peralkalinity of the residual liquid from which the mafic phases formed resulted from the early crystallization of microperthite (which makes up the bulk of the syenites) leading to an increase in the Na2O/(Na2O+K2O) and (Na2O+K2O)/Al2O3 ratios of the remaining interstitial liquid which is also enriched in Ti, Fe, and Mn. Bulk composition of the melt, , temperature and volatile content were all important variables in determining the composition and stability of the peralkaline silicates. in the residual liquid appears to have been buffered by arfvedsonite-aegirine and later by the arfvedsonite-aenigmatite and aenigmatite-aegirine equilibria under conditions of a no-oxide field. An increase in , above that of the alkali buffer reactions, is inferred by an increase of Ti and Mn in aenigmatite rims. The latest postmagmatic vapour crystallization stage of the syenites is marked by extremely low which may have been facilitated by exsolution of a gas phase. Low is supported by the replacement of aenigmatite by titanian aegirine, and the formation of rare Ti-rich garnet with a very low (Ti4++Fe3+)/(Ti+Fe) ratio of 0.51, associated with leucoxene alteration of ilmenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号