首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to achieve a better understanding of the nature of the factors influencing ground water composition as well as to specify them quantitatively, multivariate statistical analysis (factor analysis) were performed on the hydrochemical data of this area. R-mode factor analysis was carried out on the geochemical results of the 79-groundwater samples and the factor scores were transferred to areal maps. Fundamental chemical parameters of the groundwater have been compounded together for characterizing and interpreting a few empirical hydrogeochemical factors controlling the chemical nature of water. R-mode factor analysis reveals that the groundwater chemistry of the study area reflects the influence of anthropogenic activities, silicate weathering reactions, precipitation, dissolution and subsequent percolation into the groundwater. The data have been put into few major factors and the seasonal variation in the chemistry of water has been clearly brought out by these factors. Factor scores were transferred to contour diagrams and the factor score analysis has been used successfully to delineate the stations under study with various factors and the seasonal effect on the sample stations.  相似文献   

2.
The chemical composition of water samples was studied from different caves in Slovakia. The water samples were collected from caves of two karst regions: (1) the Demänovský Cave System (DCS), situated in the Low Tatra Mountains (Northern Slovakia), which is mainly formed of limestone and dolomites; and (2) the Slovakian Karst to the Southeast is formed of limestone. A considerable difference between water from the two regions was shown. The waters from the DCS, that were controlled by vadose water percolating through different types of host rocks, contained more Mg ions than those from the Slovakian Karst caves whereas, the concentration of SO4 was controlled by the dissolution of displacive gypsum and/or oxidation of pyrite. The distribution of NO3 in the studied samples was random, hence nitrates probably derived from few pollution sources. The total mineralization of the water was covariant with calcite and aragonite saturation indices. In general, both parameters are higher in the Slovakian Karst caves than in the DCS. It is controlled probably by differences in climatic conditions, soil and plant covers between these two regions. The main goal of this article is to characterize the major-ion water chemistry within the studied caves as well as some microelements. The results have confirmed the dominant role of the bedrock petrography in forming the general chemistry of cave waters.  相似文献   

3.
Maharlu Lake with Na–Cl water type is the terminal point of a closed basin in southern Iran. A total of 10 water samples from two rivers discharging to the lake and 78 water samples of surface and pore brine of Maharlu Lake have been collected from different depths (surface, 20, 50 and 100 cm) of four sampling stations along the lake during a period of lake water-level fluctuation (November 2014–July 2015). To investigate chemical interaction between lake surface water and shallow pore water and to understand the major factors governing chemical composition of Maharlu brine, concentrations of major and minor (boron, bromide and lithium) solutes, pH and total dissolved solids have been measured in collected water samples. Saturation indices of evaporite minerals in collected water samples have been also calculated. The chemical behavior of dissolved solutes and evaporative evolution of the lake brine during a hydrological period have been simulated using PHREEQC. The results of our investigations indicated that chemical composition of lake surface water and pore brine of Maharlu Lake are mainly connected with lake water-level fluctuations and distance from input rivers (and depth), respectively. Hydrochemical investigations and statistical analysis showed that the brines chemistry of Maharlu is mainly controlled by three processes: brine evaporative evolution, dissolution–precipitation and diagenetic evolution of secondary carbonates.  相似文献   

4.
Water and sediment samples collected from the Gomti River, a tributary of the Ganges River system, during the postmonsoon season have been analyzed to estimate major elemental chemistry. Water chemistry of the River Gomti shows almost monotonous spatial distribution of various chemical species, especially because of uniform presence of alluvium Dun gravels throughout the basin. The river annually transports 0.34×106 tonnes of total suspended material (TSM) and 3.0×106 tonnes of total dissolved solids (TDS), 69 percent of which is accounted for by bicarbonate ions only. Samples collected downstream of the city of Lucknow show the influence of anthropogenic loadings for a considerable distance in the river water. Na+, Cl, and SO4 2– concentrations build up downstream. The bed sediment chemistry is dominated by Si (36 percent), reflecting a high percentage of detrital quartz, which makes up about 74 percent of the mineralogy of the bed sediments in the River Gomti. The average Kjeldahl nitrogen concentration (234 g/g) indicates indirectly the amount of organic matter in the sediments. The Hg concentration in sediments has been found to be higher (average 904 ppb) than the background value. The suspended sediments are well sorted, very finely skewed, and extremely leptokurtic, indicating a low energy condition of flow in the Gomti River. The influence of chemical loads in the Gomti has been found to be small or nonexistent on the Ganges River, perhaps because the water discharge of the Gomti (1.57 percent) to the Ganges is quite low.  相似文献   

5.
海水化学演化对生物矿化的影响综述   总被引:1,自引:1,他引:0       下载免费PDF全文
显生宙非骨屑碳酸盐矿物经历了文石海和方解石海的交替,主要造礁生物和沉积物生产者的骨骼矿物与非骨屑碳酸盐矿物具有同步变化的趋势。这种长期的变化趋势可以用海水化学Mg/Ca摩尔比的变化来解释。流体包裹体、同位素和微量元素等证据也证实了海水化学在地质历史中经历过剧烈的变化。虽然生物诱导矿化和生物控制矿化的相对重要性一直存在争议,但古生物地层记录和人工海水养殖实验结果都表明,海水化学演化对生物矿化有重要的影响,体现在造礁生物群落的兴衰、生物起源时对骨骼矿物类型的选择以及微生物碳酸盐岩在地质历史中的分布等。这些为研究前寒武纪海水化学演化、古气候和古环境的重建、同位素地层对比以及碳酸盐的沉积和成岩等问题提供了新的思路。  相似文献   

6.
The chemical composition of river water integrates a number of factors such as weathering, land use, climate, vegetation cover and human activity that individually affect its chemistry. Short term variations may also be significant. The Burdekin River, NE Australia, is an example of a class of tropical streams which experiences two to four orders of magnitude variation in discharge in response to seasonal but erratic monsoonal and cyclonic rainfall. In these systems individual discharge events last for days to weeks. Given the inherent difficulty sampling these events published data on water chemistry (and thus calculated fluxes and global budgets) may tend to be biased to low flow conditions. One such discharge event in February 1996 has been investigated for its impact on the chemistry of the water. Major cations (Na, Mg, K, Ca) all decreased in concentration as the water level rose, as did the minor elements Sr, Ba and U. Some other trace elements, notably Rb, Cr, Pb and REE were enriched in the peak flow waters. The flux of all measured elements increased substantially during the seven days of the discharge event. Such short term but significant events will have a major impact on the annual fluxes of elements delivered to the oceans from the land and global discharge budgets may need to take them into account when refining databases in the future.  相似文献   

7.
Vertical variations of redox chemistry and groundwater quality were investigated in an alluvial aquifer beneath an agricultural area, in which deep groundwaters are free of NO3, Fe, and Mn problems that are frequently encountered during the development of alluvial groundwaters. This study was performed to identify and evaluate vertical chemical processes attenuating these chemical species in the study area. For this study, the processes affecting groundwater chemistry were identified by factor analysis (FA) and the groundwater samples collected from six multilevel samplers were hierarchically classified into three different redox zones by cluster analysis (CA) based on the similarity of geochemical features. FA results indicated three major factors affecting the overall water chemistry: agricultural activities (factor 1), redox reactions (factor 2), and remnant seawater (factor 3). The groundwater quality in the study area was revealed to be controlled by a series of different redox reactions, resulting in different redox zones as a function of depth. It was also revealed that the low Fe and Mn levels in the groundwater of the deeper part are associated with sulfate reduction, which led to precipitation of Fe as iron sulfide and adsorption of Mn on it.  相似文献   

8.
Using hydrogeological data, historical chemical data and the results of studies in adjacent aquifers, an interpretation of the water chemistry from a sparse network of boreholes is presented for the Liverpool area. The chemistry of the fresh groundwater samples is influenced by geology, pollution and pumping history. The oldest waters, present where the sandstone is covered by Quaternary deposits, are calcite-saturated, contain little NO3 and have low SO2−4 and Cl concentrations. However, water from the Collyhurst Sandstone are depleted in HCO3 whatever the concentrations of the other anions. Samples from boreholes in areas where the sandstones are not covered by Quaternary deposits are characterized by very low alkalinity and pH, and by high NO3, SO2−4, and Cl. In the regions of the aquifer close to sandstone outcrop, or where the Quaternary deposits are thin, the water samples have higher alkalinity and pH, and lower anion concentrations. Scattered throughout the region are boreholes yielding waters with very high SO2−4 concentrations: where associated with industrial sites, these waters also have high NO3 concentrations and industrial pollution is suspected. In rural areas the high SO2−4 concentrations are derived from leakage through the sulphur-bearing tills in response to pumping-induced lowering of the piezometric surface. The distribution of borehole water types can be described with the help of a set of rules relating water type to hydrogeological features; these rules allow a map of hydrochemical distributions to be constructed. Saline groundwaters occur in the aquifer adjacent to the Mersey Estuary and have chemistry compositions equivalent to slightly modified, diluted Estuary water. With the exception of a single deep borehole sample, there is no indication of the widespread presence of ancient saline groundwaters in the base of the sandstone sequences as is found in the sandstones to the east of the study area. However, slightly saline, reduced waters occur below the Mercia Mudstone Group in the north of the area. Historical records give some indication of the changes in water chemistry distributions through time.  相似文献   

9.
 Spatial and temporal geochemical variations of various parameters in the water and sediment of a relatively small mangrove situated on the southeast coast of India were examined in detail for the first time. The water quality generally reflects the impact of seawater and the Vellar estuary (mixing effect) aided by evaporation and in situ biological productivity. The depletion and fluctuation of dissolved silica are controlled by biological processes. Nitrate and phosphate are contributed by fertilizer input from adjoining agriculture fields. Total suspended matter (TSM) shows an erratic range and trend due to deforestation and resuspension processes. Sand and silt constitute 70–90% of the sediments. Statistical analysis of the sediments shows the prevalence of a moderately high-energy environment with very effective winnowing activity. Organic matter content is higher in the mangrove sediments in comparison to adjacent estuaries. Water and sediment show fluctuations in their chemical concentration, but no specific trends could be identified. Heavy metals are also enriched in the mangrove sediments, indicating their unique chemical behavior and the existence of trapping mechanisms. Factor analysis and correlation analysis of water and sediments show the complexity of the system and the multitude of contributing sources. The core sediment chemistry suggests the depletion of metal input due to the damming of the detrital inputs. The Pichavaram mangrove seems to be relatively unpolluted, since the anthropogenic signal observed is small and acts as a sink for heavy metals contributed from a multitude of sources without an adverse effect. Received: 5 November 1997 · Accepted: 30 March 1998  相似文献   

10.
 Rapid population growth, urbanization expansion of rural settlements, industrial activity, intensively irrigated agriculture, pesticides consumption, and continuous dumping of hazardous waste in the Amman-Zerqa Basin since 1967 are the major factors threatening the quality of the environment. Thus, an environmental recommendation is proposed to protect the environment and water resources in the study area. The chemical analysis of the springs in the study area showed salinity increasing with time, which indicates water pollution affecting these springs. The laboratory analyses indicated that the quality of the treated waste water of Khirbet Es-Samra Treatment plant conforms to the World Health Organization (WHO) standards from the chemical, physical, and the microbiological point of view. Toxic elements such as cadmium identified in the surface water flow of the basin are in concentrations higher than those recommended by WHO Received: 30 January 1997 · Accepted: 30 June 1997  相似文献   

11.
The sources impacting the water chemistry of the Nakdong River (NR) in South Korea were investigated in order to examine the pollution mechanism including the fate and transport of the contaminants and how much such sources may affect its main channel of water resource. Water samples were collected between 2007 and 2008 from 8 sites along a 510 km downstream transect of the NR, and chemical and isotopic compositions of the water samples were evaluated to identify natural and anthropogenic sources contributing to the water chemistry of the NR. The results showed that the major ion concentrations were mainly controlled by chemical weathering that occurred in the watershed, in which a silicate weathering is more dominant than a carbonate weathering. The 87Sr/86Sr ratios of the water samples were in a range from 0.71043 to 0.71520 within those of the Mesozoic volcanogenic sedimentary rocks long developed in the watershed, thereby supporting the fact that the water chemistry is governed by a chemical weathering. The δ34S values varied in a narrow range of 1.8–3.1‰, regardless of spatial and seasonal variations. Mass balance calculations indicated that the contributions of chemical weathering and anthropogenic sources during summer time increased along a downstream transect, from 67.3 ± 1.3 to 73.6 ± 0.5% and from 6.0 to 15.7%, respectively. In contrast, the contribution of chemical weathering during winter time decreased from 82.7 ± 0.8 to 72.5 ± 0.3%, while anthropogenic contribution increased up to 22.2%. These results indicated that the water chemistry of the NR was mainly caused by a chemical weathering, followed by anthropogenic inputs and rainwater. This study will provide baseline information for comparing the water quality issue before and after the implementation of the Four Rivers Restoration Project of South Korea.  相似文献   

12.
A series of mineralogical and chemical analyses for a sequence of sediments from the Four Fathom limestone to the base of the Great Limestone are presented. Factor analysis indicates that the variance of the data is controlled by four factors related to depositional processes and two related to diagenesis. The depositional factors include a sorting factor, which dominates the variance, and factors related to relative sedimentation rate, proximity to shoreline and pH of the depositional environment. Diagenetic factors include one relating to the formation of siderite and one to pyrite, the latter perhaps also being influenced by later mineralizing fluids. Limited analyses of the Four Fathom and Iron Post limestones suggest that their chemistry is controlled by slow accumulation of detrital silicates although a “mineralization overprint” may also contribute to the chemistry in small part.  相似文献   

13.
The hydrogeochemistry of the Lake Waco drainage basin,Texas   总被引:1,自引:0,他引:1  
The origin of surface water chemistry in highly impacted drainage basins must be investigated on a drainage-basin scale if the causes of the pollution are to be elucidated. This study characterizes and deciphers the surface water chemistry of a nutrient polluted river system in central Texas. Four tributaries of the Lake Waco reservoir were chemically characterized temporally and spatially in order to gain a complete understanding of the nature and origin of dissolved solids being transported into the lake. Temporal chemical variations measured at the base of each of the drainage basins are repetitive and seasonal. The most periodic and well-defined variation is exhibited by nitrate concentrations although many of the other solutes show seasonal changes as well. These temporal chemical changes are controlled by seasonal precipitation. During rainy seasons, the shallow aquifer is recharged resulting in stream discharge that is high in nitrate, calcium, and bicarbonate. When the shallow flow system is depleted in the summer, stream waters are dominated by deeper groundwater and become rich in sodium. Spatial variations in the chemistry of South Bosque surface waters were characterized using the snapshot technique. The spatial distribution of nitrate in surface waters is controlled by fertilizer application to row crops and the location of a munitions factory. The concentrations of naturally derived solutes such as Ca+, Na+, Cl, and SO4–2are controlled by underlying lithologies.  相似文献   

14.
 Before tunnel construction began, the groundwater chemical compositions and levels around the tunnel were studied to determine if water compositions could predict whether surface water will be influenced by tunnel construction. When the chemical composition of the well and springwater was similar to that of the tunnel seepage water, and the altitude of the well and spring was above the tunnel level, the groundwater level in the well and spring was influenced by draining tunnel seepage water. Therefore, comparing the chemical compositions of surface water and groundwater may be used for predictive purposes. However, the results of this study showed there was no noticeable chemical composition change in springwater prior to changes in groundwater level at a particular site. The changes in the hydrology of the plateau caused by tunnel construction were also studied, using measurements of the changes in groundwater chemistry as well as changes in groundwater levels. Prior to tunnel construction, river discharge was greater. Following tunnel construction, some river discharge decreased because springwater was drained as tunnel seepage water and the spring in the catchment dried up. Tritium concentration indicated that 3 years after tunnel construction, surface water did not reach tunnel levels in spite of groundwater level lowering and remaining unconfined groundwater being drained. Received: 17 January 1996 · Accepted: 10 July 1996  相似文献   

15.
南水北调中线水源地河水地球化学特征与流域侵蚀   总被引:1,自引:0,他引:1  
丹江口水库及其上游流域是南水北调中线工程的水源地,本文讨论了水源地河流水化学与锶同位素(87Sr/86Sr)组成变化特征,目的在于了解水源地流域河流地表水溶质的物质来源以及岩石风化侵蚀过程和人为活动的影响。流域内河流水化学组成以Ca2+、HCO3-为主,Mg2+和SO42-次之,反映了碳酸盐岩风化溶解起控制作用的典型特征。水化学分析表明水源地河水受到工农业活动等人为因素的影响;河流87Sr/86Sr同位素地球化学研究表明,流域岩石风化输入至少存在三个不同端员(硅酸岩、石灰岩和白云岩)之间的混合。水源地流域内硅酸岩和碳酸岩的风化侵蚀速率分别为38.6和4.4 t/km2.a,总岩石风化侵蚀速率高于全球河流平均值。  相似文献   

16.
The aim of this work is to evaluate the hydrogeochemical characteristics of groundwater in parts of the lower Benue Through in Nigeria as well as to evaluate the variation in groundwater chemistry data and the suitability of the groundwater for drinking and other domestic purposes. This was based on chemical analyses of 44 water samples from existing wells and boreholes in the study area. From the statistical analysis (wide ranges, median and standard deviation), it is obvious that there are significant variations in the quality/composition of groundwater in the period of sampling. The calculated SAR, Na% and RSC values indicated that the water is of excellent to good quality and is suitable for irrigation. Na and HCO3 are dominant with respect to the chemical composition of the groundwater. On the basis of water chemistry, hydrochemical indices and factor analysis the dominant controls or processes affecting the distribution of geochemical variables in the study area have been shown to be water/rock interaction which is mainly controlled by carbonate and silicate dissolution as well as anthropogenic influence to a lesser extent. Additional processes include cation exchange reactions and reverse ion exchange to a minor extent.  相似文献   

17.
Water samples were collected in the main channel of the Geum River, South Korea, and measured dissolved elemental concentrations and isotopic compositions of nitrate in order to identify the factors controlling water chemistry. Elemental concentrations significantly increased location-wise after the confluence from urban areas, indicating the changes in solute sources from chemical weathering to anthropogenic inputs such as manure, fertilizers, and sewage. In particular, the effect of sewage input is manifested in the concentrations of Cl?, SO4 2?, and Na+, while the NO3 ? concentration is influenced mainly by soil inputs with minor contributions from manure and fertilizer because both δ15N–NO3 and δ18O–NO3 indicate NO3 ? mostly consists of soil-derived nitrates in the upper reaches but manure/sewage nitrates in the lower reaches. The relative proportion of three factors, Cl?, Ca2++Mg2+, and NO3 ?, indicates that water chemistry in the upstream is controlled by the soil weathering but that in the downstream by the sewage. Seasonally, water chemistry during summer is dominated by the soil weathering due to the flushing effect but that during winter by the sewage. This study suggests that the relative proportion of three factors can be used for tracing natural and anthropogenic sources in water chemistry.  相似文献   

18.
In this paper, we analysed the monitored data from nine groundwater-monitoring transects in the lower reaches of Tarim River during the five times of stream water deliveries to the river transect where the stream flow ceased. The results showed that the groundwater depth in the lower reaches of Tarim River rose from −9.30 m before the conveyances to −8.17 and −6.50 m after the first and second conveyances, −5.81 and −6.00 m after the third and fourth the conveyance, and −4.73 m after the fifth. The horizontal extent of groundwater recharge was gradually enlarged along both sides of the channel of conveyance, i.e., from 250 m in width after the first conveyance to 1,050 m away from the channel after the fourth delivery. With the rising groundwater level, the concentrations of major anions Cl, SO42− and cations Ca2+, Mg2+, Na+, as well as total dissolved solids (TDS) in groundwater underwent a significant change. The spatial variations in groundwater chemistry indicated that the groundwater chemistry at the transect near Daxihaizi Reservoir changed earlier than that farther from it. In the same transect, the chemical variations were earlier in the monitoring well close to watercourse than that farther away from the stream. In general, the concentration of the major ions and TDS at each monitoring well increased remarkably when the water delivery started, and decreased with the continued water delivery, and then increased once again at the end of the study period. Hence, the whole study period may be divided into three stages: the initial stage, the intermediate stage and the later stage. According to the three stages of groundwater chemistry reaction to water delivery and the relationships between groundwater chemical properties and groundwater depths, we educe that under the situation of water delivery, the optimum groundwater depth in the lower reaches of the Tarim River should be −5 m.  相似文献   

19.
I-DtjcrONAlpine environment enjoys a distinct set of physicochemical conditions asl compared to other aqueous systems. Thehydrochemical characteristics of meltwater draining from thisenvironment are different from the other aqueous ecosystemsdue to their mountainous nature and extreme cold climatic conditions. The high concentration of various chemical constitu.ents in meltwater shows the intensive chemical weathering inthe basin. The rapid physical weathering due tO grinding actionof the gl…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号