首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
JGOFS has revealed the importance of marine biological activity to the global carbon cycle. Ecological models are valuable tools for improving our understanding of biogeochemical cycles. Through a series of workshops, the North Pacific Marine Science Organization (PICES) developed NEMURO (North Pacific Ecosystem Model Understanding Regional Oceanography) a model, specifically designed to simulate the lower trophic ecosystem in the North Pacific Ocean. Its ability to simulate vertical fluxes generated by biological activities has not yet been validated. Here compare NEMURO with several other lower trophic level models of the northern North Pacific. The different ecosystem models are each embedded in a common three-dimensional physical model, and the simulated vertical flux of POM and the biomass of phytoplankton are compared. The models compared are: (1) NEMURO, (2) the Kishi and Nakata Model (Kishi et al., 1981), (3) KKYS (Kawamiya et al., 1995, 2000a, 2000b), and (4) the Denman model (Denman and Peña, 2002). With simple NPZD models, it is difficult to describe the production of POM (Particulate Organic Matter) and hence the simulations of vertical flux are poor. However, if the parameters are properly defined, the primary production can be well reproduced, even though none of models we used here includes iron limitation effects. On the whole, NEMURO gave a satisfactory simulation of the vertical flux of POM in the northern North Pacific.  相似文献   

2.
《Ocean Engineering》2007,34(14-15):1909-1917
Low frequent motions of vessel may cause motion sickness in rough seas. These undesirable effects induce fatigue of crews during the navigation. The motion sickness is always an important criterion for the high-speed craft design. Modern ferry designs have been marketed with a great emphasis on the seakeeping performance. This research has been carried out by investigating the results on the vertical motion sickness incidence (MSI) study for a 40 m wave-piecing catamaran at seas. The primary purpose of this research is to investigate the vertical motion sickness characteristics of a high-speed catamaran ferry. Two mathematical models, three-dimensional translating–pulsating source distribution technique and three-dimensional pulsating source distribution technique, are used for predicting the vertical acceleration responses of the wave-piecing catamaran in oblique waves. The comparison between numerical predictions and experimental data shows a good agreement except that around the pitch resonance region in FP vertical acceleration motions. Based on the experimental observation, the discrepancies may be caused by the nonlinear effects of centre bow during large pitch motions in waves. The comfort assessments are based on the ISO-2631/1997 standard with the hydrodynamic analysis for determining the acceleration levels in different locations on the vessel. The effects of seating location, wave heading and duration of motion exposure on seasickness are discussed.  相似文献   

3.
We present MLD variability over the North Pacific Ocean in a global ocean general circulation model and impacts of three different vertical mixing schemes on it, based on statistical measures (annual mean difference, root-mean-square difference and correlation coefficient). The constant vertical mixing scheme tends to underestimate MLD over the whole basin. The Pacanowski-Philander scheme tends to overestimate MLD (> 20 m) in the mid- to high latitude during summer, implying that vertical mixing in the mid- to high latitude may not be represented properly by simple internal mixing mechanisms such as stratification or vertical shear of horizontal velocity. On the other hand, the new vertical mixing scheme (Noh et al. 2002) gives the most consistent MLD and its seasonal and spatial variability when compared with observation. These results suggest that parameterization of vertical mixing has significant effects on simulation of the seasonal and spatial variability of MLD over the North Pacific Ocean.  相似文献   

4.
For study purposes, a simplified model of a hydrofoil craft is constructed with the assumption that it has:
• heave only motion;
• no surface proximity effect on the foil;
• no foil broaching.
It is then shown that a fully submerged hydrofoil, mounted at the bottom of rigid struts, can transmit large vertical force fluctuations to the hull, even in an idealized sinusoidal seaway because of the orbital velocity field in the water. But if the foil support struts are hinged, inclined aft and resiliently supported, so that the hydrofoil can swing about the strut's pivot in response to the changes in local water velocity, then the vertical accelerations transmitted to the hull are reduced. The more the strut is inclined to the vertical, the smaller are the accelerations transmitted to the hull. A hinged strut whose equilibrium angle (for 1 g) is 60° to the vertical can reduce the vertical accelerations by an order of magnitude. It also has two other practical advantages. The strut(s) and foil will ride up towards horizontal during the rare but inevitable impacts with large marine objects (such as whales or flotsam) and during groundings. And when they encounter a region of water moving rapidly downward (which can cause a conventional fully submerged hydrofoil to experience a violent hull impact on the water) they move in such a way as to maintain a roughly constant lift force on the hull, so that there is negligible hull motion in heave.  相似文献   

5.
6.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

7.
Recent numerical studies (Hibiya et al., 1996, 1998, 2002) showed that the energy cascade across the internal wave spectrum down to small dissipation scales was under strong control of parametric subharmonic instabilities (PSI) which transfer energy from low vertical mode double-inertial frequency internal waves to high vertical mode near-inertial internal waves. To see whether or not the numerically-predicted energy cascade process is actually dominant in the real deep ocean, we examine the temporal variability of vertical profiles of horizontal velocity observed by deploying a number of expendable current profilers (XCPs) at one location near the Izu-Ogasawara Ridge. By calculating EOFs, we find the observed velocity profiles are dominated by low mode semidiurnal (∼double-inertial frequency) internal tides and high mode near-inertial internal waves. Furthermore, we find that the WKB-stretched vertical scales of the near-inertial current shear are about 250 sm and 100 sm. The observed features are reasonably explained if the energy cascade down to small dissipation scales is dominated by PSI.  相似文献   

8.
利用波流水槽构建悬浮隧道纵向截断模型试验,分析了水流及波浪作用对悬浮隧道运动响应的影响,获得了管体结构的垂向及横向运动响应特性。研究结果表明:水流流速较小时,模型振幅随约化流速Vr增大而增大,而在约化流速为5.8附近,管体振幅达到最大并在这一临界值之后形成较为稳定的振幅值,产生明显的结构共振和涡激振动“锁定”现象。振幅稳定后垂向幅值约为管径的2倍,横向幅值与管径相当。对于波浪单独作用,在波浪较弱时,横向幅值与垂向几乎相等,随着特征KCn数的增大,响应振幅先增后减。在特征KCn数小于0.51范围内,垂向振幅大于横向振幅,其余范围则相反。垂向振幅和横向振幅分别在特征KCn数为0.42和0.55时达到峰值,且两个方向的最大振幅值均与管体的管径相当。相对响应频率随着特征KCn数的增大而减少,且垂向大于横向。  相似文献   

9.
The present paper proposes a numerical model to determine horizontal and vertical components of the hydrodynamic forces on a slender submarine pipeline lying at the sea bed and exposed to non-linear waves plus a current. The new model is an extension of the Wake II type model, originally proposed for sinusoidal waves (Soedigdo et al., 1999) and for combined sinusoidal waves and currents (Sabag et al., 2000), to the case of periodic or random waves, even with a superimposed current. The Wake II type model takes into account the wake effects on the kinematic field and the time variation of drag and lift hydrodynamic coefficients. The proposed extension is based on an evolutional analysis carried out for each half period of the free stream horizontal velocity at the pipeline. An analytical expression of the wake velocity is developed starting from the Navier–Stokes and the boundary layer equations. The time variation of the drag and lift hydrodynamic coefficients is obtained using a Gaussian integration of the start-up function. A reduced scale laboratory investigation in a large wave flume has been conducted in order to calibrate the empirical parameters involved in the proposed model. Different wave and current conditions have been considered and measurements of free stream horizontal velocities and dynamic pressures on a bottom-mounted pipeline have been conducted. The comparison between experimental and numerical hydrodynamic forces shows the accuracy of the new model in evaluating the time variation of peaks and phase shifts of the horizontal and vertical wave and current induced forces.  相似文献   

10.
A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25 by 0.25 is established on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulation results are compared with those of an intermediate resolution ocean-ice coupled model with a horizontal resolution of about 1 by 1 . The results show that the simulated ocean temperature, ocean current and sea ice concentration from the eddy-permitting model are better than those from the intermediate resolution model. However, both the two models have the common problem of ocean general circulation models (OGCMs) that the majority of the simulated summer sea surface temperature (SST) is too warm while the majority of the simulated subsurface summer temperature is too cold. Further numerical experiments show that this problem can be alleviated by incorporating the non-breaking surface wave-induced vertical mixing into the vertical mixing scheme for both eddy-permitting and intermediate resolution models.  相似文献   

11.
In order to simulate the response of the primary production dynamics to the decay of the Warm-Core Ring (WCR) 86-B off the east coast of Japan, we made a numerical model which consists of a three dimensional physical model (modified GCM) and we used the same biological model that Frankset al. (1986) did. According to the three dimensional model, the well known sub-surface chlorophyll maximum was reproduced but horizontal distributions of Chl.a and NO3 -N showed different patterns corresponding to different initial conditions of nutrient. This is because the weak vertical velocity in the WCR does not play an important role on the ecosystem but only the light intensity and the balance between uptake and vertical diffusion of dissolved nutrient is important. This result differs from that of Frankset al. (1986). The two WCRs interaction model suggests that a weak upwelling could exist between two WCRs accompanied by baroclinic instability.  相似文献   

12.
ECOMSED模式在杭州湾海域流场模拟中的应用   总被引:13,自引:0,他引:13  
针对杭州湾独特的喇叭型强潮河口湾的特点,基于Blumberg等(1996)的ECOMSED模式,引入动边界技术,建立杭州湾三维动边界的潮流模型.模型以正交曲线坐标下三维非线性水动力方程为基本方程,应用Mellor和Yamada的2.5阶湍流闭合模型计算紊动黏滞系数,嵌入Grant和Madsen的底边界层模型考虑波浪对底部应力的作用,采用干湿网格法模拟潮流漫滩过程;综合考虑径流,风应力,密度流和M2,S2,K1,O1四个主要分潮和M4,S4,MS4三个浅水分潮的作用,从而提高杭州湾潮流模拟的精度.通过验潮站调和常数和多次海流连续观测资料的验证,表明该文建立的模型可以更好的用于杭州湾流场的预报模拟.  相似文献   

13.
Characteristics of the tidal residual flow, the steady current induced in the tidal current system, are studied by a numerical method. The model basin has the same topography as that studied byYanagi (1976) and byOonishi (1977) where only the horizontal motion of the residual flow is concerned. In this study, the effect of the vertical motion is investigated as it is associated with the tidal residual flow. To this end, the bottom friction omitted in the previous study (Oonishi, 1977) is included and a two-leveled model is adopted.The first two experiments exclude the earth's rotation and the buoyancy effect on the flow. The results are as follows. The horizontal flow pattern is essentially the same as that obtained in the previous Oonishi study. The bottom friction results in the reduction of the velocity of the residual flow especially in the bottom level. An important result is that vertical velocity is as strong as the horizontal velocity multiplied by the scale ratio and that it remains even in the time-average. Upwelling appears at the center of the residual circulation. This upwelling explains Yanagi's observation in the hydraulic model that the sediment is swept by the flow and accumulates horizontally in the area at the bottom below the center of the residual circulation. The distribution of a tracer, which is simultaneously calculated in these cases, indicates the important role of vertical motion in the material dispersion in the model.The last experiment includes the earth's rotation and the buoyancy effect presuming a more actual sea. It shows another effect of the vertical motion. The Coriolis term, which operates only under the condition that a horizontal divergence of the flow is present, skews the horizontal residual flow pattern.  相似文献   

14.
Parametric models of heave, pitch and roll dynamics of a high-speed craft have been estimated for different wave incidence angles in the frequency domain. Several issues that make the identification problem interesting are the following: type of parameterization, starting values, non-quadratic functions, excitation signals and short data record. The method employed guarantees a fine linear approximation of the nonlinear dynamics of a fast ship for the ultimate goal of stabilization control to reduce motion sickness associated with heave, pitch and roll accelerations. In addition, the approach achieves high-quality starting values and avoids non-quadratic terms in the cost function, which results in less computational load and significantly more accurate models when compared with a previous method employed for the same problem.  相似文献   

15.
Attitude control systems for autonomous underwater vehicles are often implemented with separate controllers for pitch motion in the vertical plane and yaw motion in the horizontal plane. We propose a novel time-varying model for a streamlined autonomous underwater vehicle that explicitly displays the coupling between yaw and pitch motion due to nonzero roll angle and/or roll rate. The model facilitates the use of a multi-input multi-output H control design that is robust to yaw-pitch coupling. The efficacy of our approach is demonstrated with field trials.  相似文献   

16.
A simple model of lower trophic level ecosystem has been created to analyze possible environmental control of primary production in eight sub-areas of the Seto Inland Sea. The primary production rates observed by Hashimotoet al. (1997a) in these sub-areas are well reproduced by the model, including horizontal processes such as horizontal transport of nutrients and vertical processes such as vertical mixing, light intensity and sinking of particulate matter. Without taking account of horizontal processes the model also successfully reproduces the observed primary production rates in some areas, but if fails to reproduce those in the others. This shows that the relative importance of the horizontal transport on the primary production differs are by area. Two time scales,T z andT H, are introduced to explain this difference.T z is a vertical cycling time of material, which is defined as the time during which the stock of the material in the water column is utilized for primary production;T H is the horizontal transit time of the material. The relative importance of the horizontal process is well explained by theT H/T z ratio; that is, the horizontal transport process is important in the areas where this ratio is small. Further the possible mechanisms of nutrient supply for the primary production in each sub-area are investigated using this model.  相似文献   

17.
The present study investigated how the perforations, water depth and rubble mound height on fully perforated semicircular breakwater (SBW) affects non-breaking wave transformations. SBW model with surface piercing condition for three different perforation ratios with 7 percentage, 11 percentage and 17 percentage were considered to study the variation of reflection, transmission, run-up characteristics and dimensionless horizontal and vertical forces as a function of relative water depth and the results are compared with an impermeable SBW and seaside perforated SBW models. From the results it is understood that, SBW with perforation ratio 17 percentage in the case of seaside perforated case shows reverse trend in hydrodynamic characteristics and for fully perforated SBW, it transmits large amount of wave energy on the seaside, which affects the tranquillity condition in the harbour. In addition, transmission characteristics of SBW models and conventional rubble mound breakwater model are compared to understand the effect of composite breakwater action and also the reflection characteristics of SBW models are compared with field data of Miyazaki Port after Sasajima et al. (1994). The results reveal that the SBW model with perforation ratio of 11 percentage in seaside and fully perforated type gives an optimum performance in terms of energy dissipation and transmission.  相似文献   

18.
The overall performance of ships depends on the seakeeping performance in specified sea areas where the vessel is designed to operate. The seakeeping performance procedure is based upon the probability of exceeding specified ship motions in a sea environment particular to the vessel's mission. Given the operational area of the vessel, the percentage of time the vessel operates in a particular sea state can be determined from an oceanographic database through application of the response amplitude operators. The predicted motions are compared to the motion limiting criteria to obtain the operability indices. However, the operability indices are strongly affected by the chosen limiting criteria. This is particularly the case for passenger vessels where many conflicting criteria are used to assess the effect of motions and accelerations on comfort and well-being of passengers. This paper investigates the effect of seakeeping criteria on seakeeping performance assessment for passenger vessels. Conventional seakeeping performance measures are evaluated for various levels of vertical accelerations defined by the ISO 2631 standard. It is shown that the estimated seakeeping performance of a passenger vessel greatly depends on the level of limiting value selected as the seakeeping criteria.  相似文献   

19.
Rapid and high-resolution motion and tension measurements were made of a caged deep-sea remotely operated vehicle (ROV) system. Simultaneous measurements were made of all six components of motion at the cage and ship A-frame and of the tension in the tether at the ship. Data were collected for cage depths of 0–1765 m. The most significant forcing was in the wave-frequency band (0.1–0.25 Hz) and accounted for over 90% of the variance of vertical acceleration. The vertical acceleration of the cage lagged the acceleration of the A-frame by up to 1.9 s and its variance was larger by up to a factor 2.2. For moderate displacements of the A-frame (≤2 m), the system is only weakly non-linear because the harmonics (3rd and 5th) of the vertical acceleration of the cage account for less than 2% of the total variance. The system is essentially one-dimensional because only the vertical motion of the cage and the vertical motion of the A-frame were coherent, while horizontal motions of the cage were weak and incoherent with any component of motion of the A-frame. The natural frequency of the system is 0.22 Hz at 1730 m, and we estimate that it is within the waveband for depths between 1450 m and the full operating depth of 5000 m.Large vertical excursions of the A-frame produce momentary slack in the tether near the cage. Retensioning results in snap loads with vertical accelerations of 0.5 gravity. Large rates of change of tension and vertical acceleration first occur at the cage during its downward motion and propagate to the surface with the characteristic speed (3870 m s−1) of tensile waves for the tether. Six echoes are clearly detectable at both ends of the tether, and their pattern is extremely repeatable in different snap loads. Due to misalignment of the tether termination with the centres of mass and buoyancy, the cage pitches by up 14° during a snap. The resulting small radius of curvature poses the greatest stress on the tether.  相似文献   

20.
The concept of micro-bubble ejection is emerging as an attractive method for viscous drag reduction for high speed craft. Most of the drag reduction literature presents results for micro-bubble ejection above/below horizontal surfaces. Nevertheless, modern high-speed hull forms are slender with vertical surfaces. This paper presents results of model tests with micro-bubble ejection to the vertical sides of a high speed model with a non-wetting coating. The coating yielded drag reduction of 4–6% and micro-bubbles with coating reduced overall drag by 4–11%. The local coefficient of friction with micro-bubbles is analyzed and found comparable to vertical flat plate results of [Madavan et al., 1984].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号